Energy Management

Persistent link for this collection

Please note: This collection contains a variety of Reports of Investigations, Technical Reports, and Technical Summary Reports on a particular subject. For all Reports of Investigations, Technical Reports, or Technical Summary Reports, please see the following collections:

Search within Energy Management

Browse

Recent Submissions

Now showing 1 - 6 of 6
  • Item
    Examination of Non-Lithium Battery Storage Concepts
    (University of Minnesota Duluth, 2021-06) Fosnacht, Donald R; Peterson, Dean M; Myers, Evan
    This study was undertaken to inform State of Minnesota Energy Policy and is funded by the Legislative-Citizens Commission on Minnesota Resources (LCCMR). It is focused on identifying alternative energy storage opportunities for the state. Various battery storage techniques for renewable energy are under active development by various parties, and many of these technologies are geared for energy storage for 2- to 4-hour duration. Other non-battery technologies are also under active development. These do not involve electrochemical storage concepts. This report summarizes non-lithium ion battery approaches that take advantage of physical principles involving gravity, compressing air and/or carbon dioxide, using hot carbon dioxide or molten salts or flywheel systems to capture energy that can be converted into electricity when renewable energy sources are unable to provide what is required. The use of these concepts can lead to long-duration storage that can facilitate better capture of available renewable energy and potentially eliminate the need for natural gas-based peaking plants to provide a more stable electrical supply when intermittent (e.g., solar or wind) resources cannot supply the necessary electricity. Additionally, the future impact of hydrogen as a means for long-duration energy storage is considered, especially using ammonia as a storage media. It is also apparent that redox flow batteries may also be useful in supporting storage needs beyond 2- to 4-hour duration. The techniques noted do not require nickel, cobalt, or lithium resources, have improved environmental characteristics, and in most cases reduced fire hazards compared to lithium ion-based battery systems. Finally, geographic information system (GIS) analysis is applied to better understand where the technologies can be potentially adopted at specific locations in the state of Minnesota. Some technologies need very specific geologic features for ready site selection; others can be placed if suitable near-grid locations are available.
  • Item
    Torrefaction of Ponderosa Pine Pellets
    (University of Minnesota Duluth, 2019-04) Young, Matthew; Hagen, Timothy S; Mack, Paul
    Oregon Torrefaction, LLC (OTL) and the US Endowment for Forestry and Communities (USFC) have formed Restoration Fuels, LLC (RF) to construct and operate a 12 ton/h kiln torrefier that targets approximately 100,000 tons of torrefied woody biomass production annually. The plant will be colocated at the Malheur Lumber Mill in John Day, Oregon. Biomass sourcing will be principally smalldiameter, low-value wood from surrounding or nearby national forests including the Malheur and the Ochoco National Forests. The bulk of the woody biomass will be ponderosa pine from the dry land forests that surround John Day. Biomass coming from national forest areas have been evaluated for compliance with the US National Environmental Policy Act (NEPA) and are termed “shelf ready” for treatment. Restoration Fuels is now in the process of acquiring biomass supply to feed the torrefier. Early discussions with potential domestic and off-shore customers points to the need to have torrefied, densified test samples available for their evaluation, and it is in OTL’s interest on behalf of RF to produce a test batch of torrefied biomass that would be representative of RF’s future fuel product and to make samples available to serve customer interests. The effort is funded by the USFC and US Forest Service. To accomplish the test sample production, the OTL provided five tons of wood pellets to the Biomass Conversion Lab (BCL) located in Coleraine, MN for a sustained torrefaction production run using ponderosa pine pellets as feedstock. The targeted heating value specification for the torrefied wood pellets as requested by OTL was 9,500 btu/lb (22.09 MJ/kg). The BCL torrefied and provided over 6,000 lbs (2,727 kg)of torrefied pellets to the OTL.
  • Item
    Test Sample Production Report Torrefaction of Ponderosa Pine Chips
    (University of Minnesota Duluth, 2019-03) Hagen, Timothy S; Young, Matthew; Mack, Paul; Grochowski, Jack; Kangas, Kevin W; Fosnacht, Donald R
    Oregon Torrefaction, LLC (OTL) and the US Endowment for Forestry and Communities has formed Restoration Fuels, LLC (RF) to construct and operate a 12 ton/h kiln torrefier which targets approximately 100,000 tons of torrefied woody biomass production annually. The plant will be colocated at the Malheur Lumber Mill, located in John Day, Oregon. Biomass sourcing will be principally small diameter, low-value wood from surrounding or nearby national forests including the Malheur and the Ochoco National Forests. The bulk of the woody biomass will be Ponderosa Pine from the dry land forests that surround John Day. Biomass coming from national forest areas have been evaluated for compliance with the US National Environmental Policy Act (NEPA) and are termed “shelf ready” for treatment. Restoration Fuels is now in the process of acquiring biomass supply to feed the torrefier. Early discussions with potential domestic and off-shore customers points to the need to have torrefied, densified test samples available for their evaluation, and it is in OTL’s interest on behalf of RF to produce a test batch of torrefied biomass that would be representative of RF’s future fuel product and to make samples available to serve customer interests. The effort is funded by the US Endowment and US Forest Service. To accomplish the test sample production, the OTL provided 32.8 tons of wood chips to the Biomass Conversion Lab (BCL) located in Coleraine, MN for a sustained torrefaction production run using ponderosa pine as feedstock. The targeted specification for the torrefied wood chips as requested by OTL was 9,500 btu/lb. The BCL successfully torrefied and provided over 14 tons of torrefied feed stock to the OTL that met this targeted specification.
  • Item
    NRRI Evaluation of Starch-Based Binders for Agglomerating Red Oak
    (University of Minnesota Duluth, 2019-01) Young, Matthew; Hagen, Timothy S
    Cargill Industrial Starch (CIS) focuses on adding value to various starch fractionations through new market development. The purpose of this project is to identify the effect of different starch fractions on torrefied wood briquettes when blended at nominal 1% to 3% inclusion rates into torrefied red oak using the performance metrics of Kansas State Tumbling can durability and 24-hour moisture uptake. It was originally envisioned that conventional ring and die pelletizing could create testable 6.35 mm (¼ inch) pellets. However, after repeated failures and a multitude of die plugging issues, the decision was made to trial rotary briquetting as an alternative densification technique using a Komarek B220B briquetter. Previous batching trials conducted by the NRRI with the Komarek B220B using torrefied red oak as feedstock have yielded viable briquettes across a variety of binder types. Recent upgrades to the densification circuit have been made and include new grinding, larger batching and conveyance devices that enhance the safety and operational aspects of the system while allowing a variety of individual and unique densification equipment to be set in place and operated consistent with client needs across a variety of industries.
  • Item
    Use of Improved Densification Conditions for Producing High Fuel Content Products from Biomass Processed by Torrefaction, Hydrothermal Carbonization, and Various Densification Methodologies: Final Report
    (University of Minnesota Duluth, 2018-03-31) Fosnacht, Donald R; Hagen, Timothy S; Young, Matthew; Carden, Kendall; Kiesel, Richard F
    The Natural Resources Research Institute is engaged in work to develop demonstration-level production of solid biofuel densified products that can be stored outside, have high bulk densities for ease of logistical transport, have good handling characteristics that minimize dust generation, possess grindability that is like coal used in power plants, and have fuel contents that match or exceed sub-bituminous coal levels. During the work, two pretreatment technologies have been investigated for concentrating the energy content of raw biomass. These include: torrefaction using an indirectly fired rotary kiln process at the demonstration level and hydrothermal carbonization at the bench and pilot scale. The Institute has also collaborated with Syngas technologies on a pilot-scale moving bed, directly heated steambased process at the pilot scale and next year will install this technology at the demonstration scale. A key factor in showing the full technical feasibility of using the pretreated materials is to demonstrate that the produced particulate fuel products can be densified to a level that allows good logistical and handling practices to be routinely attained. It has been found that hydrothermally carbonized processed materials can be agglomerated using a variety of densification devices including pelleting and briquetting in a repeatable and practical manner using commercial densification equipment with and without the use of binders. However, torrefied materials have proven to be much more difficult to densify using a variety of densification equipment, especially as the degree of torrefaction increases. Uniformly torrefied materials at high energy level appear to be especially difficult to densify but have the attributes of high fuel value and good grindability, with very little residual fiber content compared to less-torrefied material or steam-exploded biomass. Therefore, the work undertaken and explained in the following discussion has been conducted and shows that highly torrefied materials can be satisfactorily densified to produce high-energy-content products that have good physical properties, possess acceptable moisture resistance, low ash, sulfur and mercury content, and have bulk densities that can lead to improved logistics. The densification practices involve optimizing overall process conditions on an integrated systems basis and include moisture level, densification pressure, mix preparation pressure, and the use of appropriate binders when required. The densification system that seems to show the greatest promise for the highly torrefied materials is briquetting. Work will continue in examining other densification options and in improving the conditions used and discussed in this report.
  • Item
    Final Report: Demonstration of Use of Torrefied Biomass in Electric Power Generation
    (University of Minnesota Duluth, 2018-03-31) Fosnacht, Donald R