MRSEC Research Data

Persistent link for this collection

Search within MRSEC Research Data

Browse

Recent Submissions

Now showing 1 - 20 of 59
  • Item
    Supporting Data for Self-Assembly of Unusually Stable Thermotropic Network Phases by Cellobiose-Based Guerbet Glycolipids
    (2024-04-08) Das, Soumi; Zheng, Caini; Calabrese, Michelle A; Reineke, Theresa M; Siepmann, Ilja J; Mahanthappa, Mahesh K; Lodge, Timothy P; treineke@umn.edu; Reineke, Theresa M; University of Minnesota
    These files contain data along with associated output from instrumentation supporting all results reported in the referenced paper. Bicontinuous thermotropic liquid crystal (LC) materials, such as double gyroid (DG) phases, are highly promising for various applications due to their intricate 3D network structures. However, the lack of robust molecular design rules for shape-filling amphiphiles hinders their utility. To address this, we synthesized cellobiose-based glycolipids with Guerbet-type branched alkyl tails and examined their thermotropic LC self-assembly. Through techniques including differential scanning calorimetry (DSC), polarized optical microscopy (POM), and small-angle X-ray scattering (SAXS), we found that Guerbet cellobiosides have a strong propensity to form DG morphology across broad thermotropic phase ranges. The stability of these assemblies depends on the alkyl tail structure and anomeric configuration of the glycolipid in a previously unrecognized manner. Molecular simulations provide further insights, revealing molecular motifs crucial for network phase self-assembly, paving the way for future designs and applications of network LC materials.
  • Item
    Supporting data for Crosslinked polyolefins through tandem ROMP/hydrogenation
    (2024-03-14) Hillmyer, Marc A; Sample, Caitlin S; Hoehn, Brenden D; hillmyer@umn.edu; Hillmyer, Marc A; Hillmyer Research Group
    These files contain primary data along with associated output from instrumentation supporting all results reported in Sample et al. "Crosslinked Polyolefins Through Tandem ROMP/Hydrogenation". Crosslinked polyolefins have important advantages over their thermoplastic analogues, particularly improved impact strength and abrasion resistance, as well as increased chemical and thermal stability; however, most strategies for their production involve post-polymerization crosslinking of polyolefin chains. Here, a tandem ring-opening metathesis polymerization (ROMP)/hydrogenation approach is presented. Cyclooctene (COE)-co-dicyclopentadiene (DCPD) networks are first synthesized using ROMP, after which the dispersed Ru metathesis catalyst is activated for hydrogenation through addition of hydrogen gas. The reaction temperature for hydrogenation must be sufficiently high to allow mobility within the system, as dictated by thermal transitions (i.e., glass and melting transitions) of the polymeric matrix. COE-rich materials exhibit branched-polyethylene-like crystallinity (25% crystallinity) and melting points (Tm = 107 °C), as well as excellent ductility (>750 % extension), while majority DCPD materials are glassy (Tg = 84 °C) and much stiffer (E = 710 MPa); all materials exhibit high tensile toughness. Importantly, hydrogenation of olefins in these crosslinked materials leads to notable improvements in oxidative stability, as saturated networks do not experience the same substantial degradation of mechanical performance as their unsaturated counterparts upon prolonged exposure to air at high temperature.
  • Item
    Data for Boundary Frustration in Double-Gyroid Thin Films
    (2024-02-29) Magruder, Benjamin R; Morse, David C; Ellison, Christopher J; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Group, UMN CEMS
    We have used self-consistent field theory to predict the morphology and preferred orientation of the double-gyroid phase in thin films of AB diblock polymers. A manuscript has been submitted containing this data, and is expected to appear shortly. The data were generated using the C++ version of the open-source software PSCF (https://pscf.cems.umn.edu/). All input and output files from PSCF used to generate the data in the paper are included in this dataset, as well as the code used to process the data and generate the figures.
  • Item
    Data for Magnetization dynamics in synthetic antiferromagnets with perpendicular magnetic anisotropy
    (2023-11-09) Huang, Dingbin; Zhang, Delin; Kim, Yun; Wang, Jian-Ping; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering Center
    This repository contains data along with associated output from instrumentation supporting all results reported in Huang, D.; Zhang, D.; Kim, Y; Wang, J.P.; and Wang X. Magnetization dynamics in synthetic antiferromagnets with perpendicular magnetic anisotropy. Phys. Rev. B., 2023, 107, 214438. The magnetization dynamics of the perpendicular synthetic antiferromagnets (p-SAFs) sample is detected by time-resolved magneto-optical Kerr effect (TR-MOKE), which is ultrafast-laser-based metrology utilizing a pump-probe configuration. In TR-MOKE, pump laser pulses interact with the sample, initiating magnetization dynamics in magnetic layers via inducing ultrafast thermal demagnetization. The laser-induced heating brings a rapid decrease to the magnetic anisotropy fields and interlayer exchange coupling (IEC), which changes equilibrium direction of magnetization in each layer and initiates the precession. The magnetization dynamics due to pump excitation is detected by a probe beam through MOKE. In our setup, the incident probe beam is normal to the sample surface (polar MOKE); therefore, the Kerr rotation angle (θ_K) of the reflected probe beam is proportional to the z component of the magnetization.
  • Item
    Data for Crystal-Chemical Origins of the Ultrahigh Conductivity of Metallic Delafossites
    (2023-11-09) Zhang, Yi; Tutt, Fred; Evans, Guy N; Sharma, Prachi; Haugstad, Greg; Kaiser, Ben; Ramberger, Justin; Bayliff, Samuel; Tao, Yu; Manno, Mike; Garcia-Barriocanal, Javier; Chaturvedi, Vipul; Fernandes, Rafael M; Birol, Turan; Seyfried Jr, William E; Leighton, Chris; leighton@umn.edu; Leighton, Chris; Leighton Electronic and Magnetic Materials Lab
    Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO2, PtCoO2) are the most conductive oxides known, for reasons that remain poorly understood. Their room-temperature conductivity can exceed that of Au, while their low-temperature electronic mean-free-paths reach an astonishing 20 um. It is widely accepted that these materials must be ultrapure to achieve this, although the methods for their growth (which produce only small crystals) are not typically capable of such. Here, we first report a new approach to PdCoO2 crystal growth, using chemical vapor transport methods to achieve order-of-magnitude gains in size, the highest structural qualities yet reported, and record residual resistivity ratios (>440). Nevertheless, the first detailed mass spectrometry measurements on these materials reveal that they are not ultrapure, typically harboring 100s-of-parts-per-million impurity levels. Through quantitative crystal-chemical analyses, we resolve this apparent dichotomy, showing that the vast majority of impurities are forced to reside in the Co-O octahedral layers, leaving the conductive Pd sheets highly pure (~1 ppm impurity concentrations). These purities are shown to be in quantitative agreement with measured residual resistivities. We thus conclude that a previously unconsidered “sublattice purification” mechanism is essential to the ultrahigh low-temperature conductivity and mean-free-path of metallic delafossites. This dataset contains all digital data in the published paper of the same name.
  • Item
    Supporting data for Temperature-dependent thermal conductivity of MBE-grown epitaxial SrSnO₃ films
    (2023-11-06) Zhang, Chi; Liu, Fengdeng; Guo, Silu; Zhang, Yingying; Xu, Xiaotian; Mkhoyan, Andre; Jalan, Bharat; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering Center
    This work studies the temperature-dependent thermal properties of a single crystalline SSO thin film prepared with hybrid molecular beam epitaxy. By combining time-domain thermoreflectance and Debye–Callaway modeling, physical insight into thermal transport mechanisms is provided. At room temperature, the 350-nm SSO film has a thermal conductivity of 4.4 W m¯¹ K¯¹ , ∼60% lower than those of other perovskite oxides (SrTiO₃, BaSnO₃) with the same ABO₃ structural formula. This difference is attributed to the low zone-boundary frequency of SSO, resulting from its distorted orthorhombic structure with tilted octahedra. At high temperatures, the thermal conductivity of SSO decreases with temperature following a ∼T ¯⁰∙⁵⁴ dependence, weaker than the typical T¯¹ trend dominated by the Umklapp scattering. Corresponding author for STEM data is K. Andre Mkhoyan. Corresponding author for film growth and XRD data is Bharat Jalan. Corresponding author for TDTR data is Xiaojia Wang.
  • Item
    Data for Gaming self-consistent field theory: Generative block polymer phase discovery
    (2023-10-18) Chen, Pengyu; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Research Group - University of Minnesota Department of Chemical Engineering and Materials Science
    This dataset contains the input and output files for self-consistent field theory (SCFT) simulations and the training of generative adversarial networks (GANs) in the associated paper.
  • Item
    Data for Single Gyroid in H-shaped Block Copolymers
    (2023-10-05) Park, Sojung; Bates, Frank S; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Research Group - University of Minnesota Department of Chemical Engineering and Materials Science
    This data set contains the input and output files from the PSCF C++ program used for the self-consistent field theory (SCFT) simulation in "Single Gyroid in H-shaped Block Copolymers." Self-consistent field theory was used to investigate the equilibrium phase behavior of H-shaped block copolymers. With this dataset, users should be able to regenerate all the calculations that appeared in the paper, using the open-source C++ SCFT program available on GitHub (https://github.com/dmorse/pscfpp).
  • Item
    Data for Surface Relief Terraces in Double Gyroid-Forming Polystyrene-block-Polylactide Thin Films
    (2023-09-28) Yang, Szu-Ming; Oh, Jinwoo; Magruder, Benjamin R; Kim, HeeJoong; Dorfman, Kevin D; Mahanthappa, Mahesh K; Ellison, Christopher J; cellison@umn.edu; Ellison, Christopher J; University of Minnesota Department of Chemical Engineering and Materials Science
    This study describes the thin film self-assembly behavior of a polystyrene-block-polylactide (SL-G) diblock copolymer, which undergoes melt self-assembly in bulk into a double gyroid (DG) network phase with a cubic unit cell parameter a = 52.7 nm. Scanning electron microscopy (SEM) and grazing-incidence small-angle X-ray scattering (GISAXS) reveal that thermally annealing 140–198 nm thick copolymer films on SiO2 substrates below the morphological order-to-disorder transition temperature yields polydomain DG structures, in which the (422) planes are oriented parallel to the surface. Bright-field optical microscopy (OM) and atomic force microscopy (AFM) analyses further reveal the film thickness-dependent formation of topographical terraces, including islands, holes, and bicontinuous features. The occurrence of these features sensitively depends on the incommensurability of the as-prepared film thickness and the (211)-interplanar spacing (d211) of the DG unit cell. While the steps heights between adjacent terraces exhibiting characteristic “double wave” patterns of the DG (422) planes coincide with d211, previously unreported transition zones between adjacent terraces are observed wherein “boomerang” and “droplet” patterns are observed. These intermediate patterns follow the expected sequence of adjacent termination planes of the bulk DG unit cell along the [211] direction, as confirmed by comparisons with self-consistent mean-field theory calculations.
  • Item
    Supporting data for Mending Cracks Atom-by-atom in Rutile TiO2 with Electron Beam Radiolysis
    (2023-08-28) Guo, Silu; Yun, Hwanhui; Nair, Sreejith; Jalan, Bharat; Mkhoyan, K. Andre; mkhoyan@umn.edu; Mkhoyan, K. Andre; Materials Research Science & Engineering Center
    Experimental data for a manuscript "Mending Cracks Atom-by-atom in Rutile TiO2 with Electron Beam Radiolysis". Essential data includes scanning transmission electron microscopy (STEM) raw images and electron energy-loss spectroscopy (EELS) spectrum data. Important atomic line scans data and radiolysis cross section data file are included to support our “two-step rolling” model of mobile octahedral building blocks enabling radiolysis-driven atomic migration.
  • Item
    Data for Threading-the-Needle: Compatibilization of HDPE/iPP blends with butadiene-derived polyolefin block copolymers
    (2023-07-31) Shen, Liyang; Diaz Gorbea, Gabriela; Danielson, Evan; Cui, Shuquan; Ellison, Christopher J; Bates, Frank S; bates001@umn.edu; Bates, Frank S; University of Minnesota Department Chemical Engineering and Material Science
    Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene (iPP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE-iPP block copolymers (ca. 1 wt%) to mixtures of these polyolefns results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and iPP, where E and X are poly(ethylene-ran-ethylethylene) random copolymers with 6% and 90% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and iPP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline iPP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world’s top two plastics.
  • Item
    Supporting data for Core−Shell Gyroid in ABC Bottlebrush Block Terpolymers
    (2023-05-25) Cui, Shuquan; Zhang, Bo; Shen, Liyang; Bates, Frank S; Lodge, Timothy P; lodge@umn.edu; Lodge, Timothy P; University of Minnesota Department of Chemistry
    These files contain primary data supporting all results reported in Cui et al. "Core−shell gyroid in ABC bottlebrush block terpolymers." A series of bottlebrush block polymers containing 24 PEP-PS diblock copolymers and 109 PEP-PS-PEO triblock terpolymers were synthesized by ring-opening metathesis polymerization (ROMP) of norbornene-functionalized poly(ethylene-alt-propylene) (PEP), poly(styrene) (PS), and poly(ethylene oxide) (PEO) macromonomers. The molecular weights of the three macromonomers were around 1 kg/mol. The relatively modest total backbone degrees of polymerization ranged from ca. 20 to 40. Morphologies of these bottlebrush block polymers were characterized by small-angle X-ray scattering (SAXS). The PEP-PS diblocks exhibited only cylindrical (HEX) and lamellar (LAM) morphologies; the desired network phases did not appear in these materials, consistent with previous experimental studies. However, adding variable-length bottlebrush PEO blocks to diblocks containing 30% to 50% PS led to a substantial core-shell double gyroid (GYR) phase window in the ternary phase portrait. Encouragingly, the GYR unit cell dimensions increased almost linearly with the backbone degree of polymerization, portending the ability to access larger network dimensions than previously obtained with linear block polymers. This finding demonstrates a periodic network phase in bottlebrush block polymers for the first time and highlights extraordinary opportunities associated with applying facile ROMP chemistry to multiblock bottlebrush polymers.
  • Item
    Supporting data for Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3−δ films via room-temperature ion-gel gating
    (2023-04-19) Zhang, Yingying; Postiglione, William M; Xie, Rui; Zhang, Chi; Zhou, Hao; Chaturvedi, Vipul; Heltemes, Kei; Zhou, Hua; Feng, Tianli; Leighton, Chris; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering Center
    These files contain data along with associated output from instrumentation supporting all results reported in Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-delta films via room-temperature ion-gel gating. Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-delta (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with  ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with  = 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications. Authors to whom correspondence should be addressed are Chris Leighton (leighton@umn.edu) and Xiaojia Wang (wang4940@umn.edu).
  • Item
    Structural and chemical characterization data for Ir and Ru metal/metal-oxide thin films showing strain dependence of metal oxidation
    (2023-04-05) Nair, Sreejith T; Yang, Zhifei; Lee, Dooyong; Guo, Silu; Sadowski, Jerzy T; Johnson, Spencer; Saboor, Abdul; Li, Yan; Zhou, Hua; Comes, Ryan B; Jin, Wencan; Mkhoyan, Andre K; Janotti, Anderson; Jalan, Bharat; nair0074@umn.edu; Nair, Sreejith T; University of Minnesota Jalan MBE Lab
    In this work, the authors uncover a previously unexplored effect of substrate imposed epitaxial strain on the formation energy of a crystalline epitaxial metal oxide thin film, thereby revealing an additional tuning knob to engineer synthesis of oxide thin films of hard-to-oxidize metals.
  • Item
    Data for Alternating Gyroid Stabilized by Surfactant-like Triblock Terpolymers in IS/SO/ISO Ternary Blends
    (2023-03-22) Chen, Pengyu; Bates, Frank S; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin, D; Dorfman Research Group - University of Minnesota Department of Chemical Engineering and Materials Science
    This dataset contains the self-consistent field theory (SCFT) simulation results in the associated paper (https://doi.org/10.1021/acs.macromol.2c02485)
  • Item
    Data from Complex Phase Behavior in Binary Blends of AB Diblock Copolymer and ABC Triblock Terpolymer
    (2023-02-08) Park, Sojung; Bates, Frank S; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Research Group - University of Minnesota Department of Chemical Engineering and Materials Science
    This data set contains the input and output files from the PSCF C++ program used for the self-consistent field theory (SCFT) simulation in "Complex Phase Behavior in Binary Blends of AB Diblock Copolymer and ABC Triblock Terpolymer." Self-consistent field theory was used to investigate the phase behavior in the binary AB/ABC block polymer blends. With this dataset, users should be able to regenerate all the calculations that appeared in the paper, using the open-source C++ SCFT program available on GitHub (https://github.com/dmorse/pscfpp).
  • Item
    Supporting Data for 'Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor-Couette flows'
    (2023-01-13) Panwar, Vishal; Vargas, Cassandra; Dutcher, Cari; panwa015@umn.edu; Panwar, Vishal; Complex Fluids and Multiphase Flows
    Flow calibration, concentration, intermixing coefficient, and droplet size distribution datasets for the figures in 'Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor-Couette flows'.
  • Item
    Supporting data for Atomistically-informed continuum modeling and isogeometric analysis of 2D materials over holey substrates
    (2022-12-20) Choi, Moon-ki; Pasetto, Marco; Shen, Zhaoxiang; Tadmor, Ellad; Kamensky, David; choi0652@umn.edu; Choi, Moon-ki; University of Minnesota Tadmor group; University of California San Diego Kamensky group
    Data includes LAMMPS input script for MoS2 test problems and MATLAB data for generating figures in the paper.
  • Item
    Supporting data for "Semi-metallic SrIrO3 films using solid-source metal-organic molecular beam epitaxy"
    (2022-12-20) Choudhary, Rashmi; Nair, Sreejith; Yang, Zhifei; Lee, Dooyong; Jalan, Bharat; choud140@umn.edu; Choudhary, Rashmi; Jalan MBE Lab
    The data contains X-ray and electrical characterization of SrIrO3 films grown by solid-source metal-organic molecular beam epitaxy (SSMOMBE). It reveals that SSMOMBE can produce high-quality crystals and has numerous other advantages compared to conventional molecular beam epitaxy.
  • Item
    Supporting data for Tuning the thermodynamic, optical, and rheological properties of thermoresponsive polymer solutions via silica nanoparticle shape and concentration
    (2022-12-08) Neal, Christopher A P; Leon, Valeria; Quan, Michelle C; Chibambo, Nondumiso O; Calabrese, Michelle A; c-neal@umn.edu; Neal, Christopher A P; University of Minnesota, Twin Cities Calabrese Research Lab
    In this work, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), turbidimetry, and oscillatory rheology were utilized to examine interactions between NPs, PNIPAM, and water and to track changes in phase separation and mechanical properties due to NP concentration and shape. Data presented in this set include raw data files for aforementioned techniques as well as SEM micrographs of silica nanoparticles and thermo-gravimetric analysis (TGA) data for nanoparticle characterization. Through the analysis in the supported manuscript, we found that NP addition reduces phase separation enthalpy (from DSC data) due to PNIPAM-NP hydrogen bonding interactions, the degree to which depends on polymer content. While NP addition minorly impacts thermodynamic (from DSC data) and optical (from turbidimetry data) properties, rheological transitions and associated rheological properties (both from rheology data) are dramatically altered with increasing temperature, and depend on NP quantity, shape, and polymer molecular weight. Thus NP content and shape can be used to finely tune transition temperatures and mechanical properties for applications in stimuli-responsive materials.