Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

A global method for calculating plant CSR ecological strategies applied across biomes world‐wide

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

A global method for calculating plant CSR ecological strategies applied across biomes world‐wide

Published Date

2017

Publisher

Wiley

Type

Article

Abstract

Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world-wide. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.

Description

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

10.1111/1365-2435.12722

Previously Published Citation

Other identifiers

Suggested citation

Pierce, Simon; Negreiros, Daniel; Cerabolini, Bruno E. L.; Kattge, Jens; Díaz, Sandra; Kleyer, Michael; Shipley, Bill; Wright, Stuart Joseph; Soudzilovskaia, Nadejda A; Onipchenko, Vladimir G.; van Bodegom, Peter M; Frenette-Dussault, Cedric; Weiher, Evan; Pinho, Bruno X; Cornelissen, Johannes H. C.; Grime, John Philip; Thompson, Ken; Hunt, Roderick; Wilson, Peter J,; Buffa, Gabriella; Nyakunga, Oliver C; Reich, Peter B; Caccianiga, Marco; Mangili, Federico; Ceriani, Roberta M; Luzzaro, Alessandra; Brusa, Guido; Siefert, Andrew; Barbosa, Newton P. U.; Chapin, Francis Stuart, III; Cornwell, William K; Fang, Jingyun; Fernandes, Geraldo Wilson; Garnier, Eric; Le Stradic, Soizig; Peñuelas, Josep; Melo, Felipe P. L.; Slaviero, Antonio; Tabarelli, Marcelo; Tampucci, Duccio. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Retrieved from the University Digital Conservancy, 10.1111/1365-2435.12722.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.