Dr. Peter Reich

Persistent link for this collection

Search within Dr. Peter Reich


Recent Submissions

Now showing 1 - 20 of 172
  • Item
    Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species
    (Elsevier, 2016) Mueller, Kevin E; Eisenhauer, Nico; Reich, Peter B; Hobbie, Sarah E; Chadwick, Oliver A; Chorover, Jon; Dobies, Tomasz; Hale, Cynthia M; Jagodziński, Andrzej M; Kałucka, Izabela; Kasprowicz, Marek; Kieliszewska-Rokicka, Barbara; Modrzyński, Jerzy; Rożen, Anna; Skorupski, Maciej; Sobczyk, Łukasz; Stasińska, Małgorzata; Trocha, Lidia K.; Weiner, January; Wierzbicka, Anna; Oleksyn, Jacek
    Management of biodiversity and ecosystem services requires a better understanding of the factors that influence soil biodiversity. We characterized the species (or genera) richness of 10 taxonomic groups of invertebrate soil animals in replicated monocultures of 14 temperate tree species. The focal invertebrate groups ranged from microfauna to macrofauna: Lumbricidae, Nematoda, Oribatida, Gamasida, Opilionida, Araneida, Collembola, Formicidae, Carabidae, and Staphylinidae. Measurement of invertebrate richness and ancillary variables occurred ∼34 years after the monocultures were planted. The richness within each taxonomic group was largely independent of richness of other groups; therefore a broad understanding of soil invertebrate diversity requires analyses that are integrated across many taxa. Using a regression-based approach and ∼125 factors related to the abundance and diversity of resources, we identified a subset of predictors that were correlated with the richness of each invertebrate group and richness integrated across 9 of the groups (excluding earthworms). At least 50% of the variability in integrated richness and richness of each invertebrate group was explained by six or fewer predictors. The key predictors of soil invertebrate richness were light availability in the understory, the abundance of an epigeic earthworm species, the amount of phosphorus, nitrogen, and calcium in soil, soil acidity, and the diversity or mass of fungi, plant litter, and roots. The results are consistent with the hypothesis that resource abundance and diversity strongly regulate soil biodiversity, with increases in resources (up to a point) likely to increase the total diversity of soil invertebrates. However, the relationships between various resources and soil invertebrate diversity were taxon-specific. Similarly, diversity of all 10 invertebrate taxa was not high beneath any of the 14 tree species. Thus, changes to tree species composition and resource availability in temperate forests will likely increase the richness of some soil invertebrates while decreasing the richness of others.
  • Item
    Convergence in the temperature response of leaf respiration across biomes and plant functional types
    (2016) Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-De La Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K
    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  • Item
    Temperature response of soil respiration largely unaltered with experimental warming
    (2016) Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert
    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.
  • Item
    Climate modifies response of non-native and native species richness to nutrient enrichment
    (2016) Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; Macdougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; Mcculley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T
    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.
  • Item
    Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
    (The Royal Society, 2016) Craven, Dylan; Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; Van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; De Luca, Enrica; Griffin, John N; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Palmborg, Cecilia; Polley, H Wayne; Reich, Peter B; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P; Tilman, David; Vogel, Anja; Eisenhauer, Nico
    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
  • Item
    Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration
    (Wiley, 2016) Jewell, Mark Davidson; Shipley, Bill; Low-Décarie, Etienne; Tobner, Cornelia M; Paquette, Alain; Messier, Christian; Reich, Peter B
    The decomposition of plant material is an important ecosystem process influencing both carbon cycling and soil nutrient availability. Quantifying how plant diversity affects decomposition is thus crucial for predicting the effect of the global decline in plant diversity on ecosystem functioning. Plant diversity could affect the decomposition process both directly through the diversity of the litter, and/or indirectly through the diversity of the host plant community and its affect on the decomposition environment. Using a biodiversity experiment with trees in which both functional and taxonomic diversity were explicitly manipulated independently, we tested the effects of the functional diversity and identity of the living trees separately and in combination with the functional diversity and identity of the decomposing litter on rates of litter decomposition and soil respiration. Plant traits, predominantly leaf chemical and physical traits, were correlated with both litter decomposition and soil respiration rates. Surface litter decomposition, quantified by mass loss in litterbags, was best explained by abundance-weighted mean trait values of tree species from which the litter was assembled (functional identity). In contrast, soil respiration, which includes decomposition of dissolved organic carbon and root respiration, was best explained by the variance in trait values of the host trees (functional diversity). This research provides insight into the effect of loss of tree diversity in forests on soil processes. Such understanding is essential to predicting changes in the global carbon budget brought on by biodiversity loss.
  • Item
    Becoming less tolerant with age: sugar maple, shade, and ontogeny
    (Springer, 2015) Sendall, Kerrie; Lusk, Christopher; Reich, Peter B
    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.
  • Item
    Reinforcing loose foundation stones in trait-based plant ecology
    (Springer, 2016) Shipley, Bill; De Bello, Francesco; Cornelissen, J. Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B
    The promise of “trait-based” plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.
  • Item
    Global convergence in leaf respiration from estimates of thermal acclimation across time and space
    (Wiley, 2015) Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru
    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe.
  • Item
    How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents
    (Elsevier, 2015) Poorter, Hendrik; Jagodzinski, Andrzej M; Oleksyn, Jacek; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Reich, Peter B; Usoltsev, Vladimir A; Buckley, Thomas N; Sack, Lawren
    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio.
  • Item
    Scots pine fine roots adjust along a 2000‐km latitudinal climatic gradient
    (Wiley, 2016) Zadworny, Marcin; Mccormack, M. Luke; Mucha, Joanna; Reich, Peter B; Oleksyn, Jacek
    Patterns of plant biomass allocation and functional adjustments along climatic gradients are poorly understood, particularly belowground. Generally, low temperatures suppress nutrient release and uptake, and forests under such conditions have a greater proportion of their biomass in roots. However, it is not clear whether ‘more roots’ means better capacity to acquire soil resources. Herein we quantified patterns of fine-root anatomy and their biomass distribution across Scots pine (Pinus sylvestris) populations both along a 2000-km latitudinal gradient and within a common garden experiment with a similar range of populations. We found that with decreasing mean temperature, a greater percentage of Scots pine root biomass was allocated to roots with higher potential absorptive capacity. Similar results were seen in the common experimental site, where cold-adapted populations produced roots with greater absorptive capacity than populations originating from warmer climates. These results demonstrate that plants growing in or originated from colder climates have more acquisitive roots, a trait that is likely adaptive in the face of the low resource availability typical of cold soils.
  • Item
    Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta‐analysis
    (Wiley, 2017) Lee, Marissa R; Bernhardt, Emily S; Bodegom, Peter M; Cornelissen, J. Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P
    Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species’ traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species’ impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling.
  • Item
    Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?
    (Wiley, 2016) Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V. M.; Medlyn, Belinda E; Duursma, Remko A
    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra), GPP and their ratio (Ra/GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra. Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra/GPP) and the mean daily temperature. Thus, warming significantly increased Ra/GPP by moving plants to higher positions on the shared Ra/GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra/GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.
  • Item
    Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis
    (2016) Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G
    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair) or ambient Tair + 3°C (i.e. ‘warmed’). We measured light- and CO2-saturated net photosynthesis (Amax) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source–sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.
  • Item
    Microbial diversity drives multifunctionality in terrestrial ecosystems
    (2016) Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K
    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
  • Item
    Biodiversity increases the resistance of ecosystem productivity to climate extremes
    (Nature Publishing Group, 2015) Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A; Polley, H. Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico
    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
  • Item
    Boreal and temperate trees show strong acclimation of respiration to warming
    (Nature Publishing Group, 2016) Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A
    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming1, 2. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature3, 4, 5, 6, 7, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies4, 7, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.
  • Item
    The global spectrum of plant form and function
    (2016) Díaz, Sandra; Kattge, Jens; Cornelissen, Johannes H C; Wright, Ian J; Lavorel, Sandra; Dray, Stéphane; Reu, Björn; Kleyer, Michael; Wirth, Christian; Prentice, I. Colin; Garnier, Eric; Bönisch, Gerhard; Westoby, Mark; Poorter, Hendrik; Reich, Peter B; Moles, Angela T; Dickie, John; Gillison, Andrew N; Zanne, Amy E; Chave, Jérôme; Wright, S. Joseph; Sheremet’ev, Serge N; Jactel, Hervé; Baraloto, Christopher; Cerabolini, Bruno; Pierce, Simon; Shipley, Bill; Kirkup, Donald; Casanoves, Fernando; Joswig, Julia S; Günther, Angela; Falczuk, Valeria; Rüger, Nadja; Mahecha, Miguel D; Gorné, Lucas D
    Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.
  • Item
    Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment
    (Wiley, 2016) Nguyen, Nhu H; Williams, Laura J; Vincent, John B; Stefanski, Artur; Cavender‐Bares, Jeannine; Messier, Christian; Paquette, Alain; Gravel, Dominique; Reich, Peter B; Kennedy, Peter G
    Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant-associated effects on soil fungal communities are largely guild-specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.
  • Item
    The diversity and co-occurrence patterns of N2-fixing communities in a CO2-enriched grassland ecosystem
    (springer, 2016) Tu, Qichao; Zhou, Xishu; He, Zhili; Xue, Kai; Wu, Liyou; Reich, Peter B; Hobbie, Sarah; Zhou, Jizhong
    Diazotrophs are the major organismal group responsible for atmospheric nitrogen (N2) fixation in natural ecosystems. The extensive diversity and structure of N2-fixing communities in grassland ecosystems and their responses to increasing atmospheric CO2 remain to be further explored. Through pyrosequencing of nifH gene amplicons and extraction of nifH genes from shotgun metagenomes, coupled with co-occurrence ecological network analysis approaches, we comprehensively analyzed the diazotrophic community in a grassland ecosystem exposed to elevated CO2 (eCO2) for 12 years. Long-term eCO2 increased the abundance of nifH genes but did not change the overall nifH diversity and diazotrophic community structure. Taxonomic and phylogenetic analysis of amplified nifH sequences suggested a high diversity of nifH genes in the soil ecosystem, the majority belonging to nifH clusters I and II. Co-occurrence ecological network analysis identified different co-occurrence patterns for different groups of diazotrophs, such as Azospirillum/Actinobacteria, Mesorhizobium/Conexibacter, and Bradyrhizobium/Acidobacteria. This indicated a potential attraction of non-N2-fixers by diazotrophs in the soil ecosystem. Interestingly, more complex co-occurrence patterns were found for free-living diazotrophs than commonly known symbiotic diazotrophs, which is consistent with the physical isolation nature of symbiotic diazotrophs from the environment by root nodules. The study provides novel insights into our understanding of the microbial ecology of soil diazotrophs in natural ecosystems.