TrashCan 1.0 An Instance-Segmentation Labeled Dataset of Trash Observations

Thumbnail Image
View Statistics

Collection period


Date completed


Date updated

Time period coverage

Geographic coverage

Source information

Journal Title

Journal ISSN

Volume Title


TrashCan 1.0 An Instance-Segmentation Labeled Dataset of Trash Observations

Published Date


Author Contact

Sattar, Junaed




The TrashCan dataset is comprised of annotated images (7,212 images currently) which contain observations of trash, ROVs, and a wide variety of undersea flora and fauna. The annotations in this dataset take the format of instance segmentation annotations: bitmaps containing a mask marking which pixels in the image contain each object. The imagery in TrashCan is sourced from the J-EDI (JAMSTEC E-Library of Deep-sea Images) dataset, curated by the Japan Agency of Marine Earth Science and Technology (JAMSTEC). This dataset contains videos from ROVs operated by JAMSTEC since 1982, largely in the sea of Japan. The dataset has two versions, TrashCan-Material and TrashCan-Instance, corresponding to different object class configurations. The eventual goal is to develop efficient and accurate trash detection methods suitable for onboard robot deployment. While datasets have previously been created containing bounding box level annotations of trash in marine environments, TrashCan is, to the best of our knowledge, the first instance-segmentation annotated dataset of underwater trash. It is our hope that the release of this dataset will facilitate further research on this challenging problem, bringing the marine robotics community closer to a solution for the urgent problem of autonomous trash detection and removal.


The dataset is uploaded in three .zip files: contains the images and labels of the TrashCAN dataset, while and contain network configurations and checkpoints for Faster-RCNN and Mask-RCNN evaluations of the TrashCan-Instance and TrashCan-Material dataset versions.

Referenced by

Hong, J., Fulton, M., & Sattar, J. (2020). TrashCan: A Semantically-Segmented Dataset towards Visual Detection of Marine Debris. arXiv preprint

Related to



Funding information

Previously Published Citation

Suggested citation

Hong, Jungseok; Fulton, Michael S; Sattar, Junaed. (2020). TrashCan 1.0 An Instance-Segmentation Labeled Dataset of Trash Observations. Retrieved from the Data Repository for the University of Minnesota (DRUM),
View/Download file
File View/OpenDescriptionSize
dataset.zipTrashCan 1.0 dataset: 7,212 images and annotations527.41 MB
instance_checkpoints.zipNetwork weights and configurations for Mask-RCNN and Faster-RCNN evaluations of the TrashCan-Instance version8.89 GB
material_checkpoints.zipNetwork weights and configurations for Mask-RCNN and Faster-RCNN evaluations of the TrashCan-Material version8.89 GB
README.txtDescription of the dataset1000 B
LICENSE.txtLicense for the dataset. Free for academic/personal use, must contact JAMSTEC for license for commercial use.820 B

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.