Browsing by Subject "environmental impacts"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Economic and Local Government Impacts of the Minnesota Swine Industry.(2000) Lazarus, William; Morse, George; Platas, Diego; Guess-Murphy, SteffanieItem Environment and the River: Maps of the Mississippi.(Center for Urban and Regional Affairs, University of Minnesota, 1991) Craig, William J.; Anderson, William S.Item Grass Lake: Past, Present, and Future Kenny Neighborhood Association.(1996) Ross, Lanya E.Item HomeGrown: Sustainable Agriculture and Local Foods in Central Minnesota(2007) Stephenson, EmilyItem Houston County Trail Development Master Plan(2005) Reusch, AlyssaItem Hydrokinetic turbine array performance and geomorphic effects under different siting strategies and sediment transport conditions: topography, flow velocity and array performance measurements(2019-06-27) Musa, Mirko; Hill, Craig; Guala, Michele; mguala@umn.edu; Guala, Michele; Saint Anthony Falls Laboratory, CEGE, University of MinnesotaHydrokinetic energy can be extracted efficiently from naturally occurring water flows. Although representing a continuous and ubiquitous source of kinetic energy, rivers in particular are delicate environments, sensitive to external disturbances. Asymmetric installation of in-stream hydrokinetic energy converters have proven to actively interact with sediment transport and bedforms characteristics, triggering non-local geomorphic effects that resemble river instabilities known as forced-bars. This data-set comprises a series of measurements of channel topography evolution, flow velocity around the turbines and array performance under different configurations.Item Midtown Greenway Land Use and Transit Project.(2001) Shallcross, GaryItem Midtown Greenway Zoning Overlay District Evaluation.(2002) McCartney, MollyItem RECOVERY OF SEDIMENT CHARACTERISTICS IN MORAINE, HEADWATER STREAMS OF NORTHERN MINNESOTA AFTER FOREST HARVEST(2010) Merten, Eric, C.; Hemstad, Nathaniel, A.; Kolka, Randall, K.; Newman, Raymond, M.; Verry, Elon, S.; Vondracek, BruceWe investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.Item Residential Land Development Regulation in the Twin Cities Metropolitan Area.(1982) Shippee, B. Warner; Dyke, George; Helgeson, Stefan; Stadum, BeverlyItem Scaled Hydrokinetic Turbine Array installed in a laboratory channel and flood-like sediment transport conditions: topography, flow velocity and array model performance(2019-06-26) Musa, Mirko; Hill, Craig; Sotiropoulos, Fotis; Guala, Michele; mguala@umn.edu; Guala, Michele; Saint Anthony Falls Laboratory, CEGE, University of MinnesotaThe data represent sediment flux, spatio-temporally resolved topographic scans, flow velocity and voltage from the hydrokinetic turbine array experiments presented in the referenced scientific article published on Nature Energy (see reference). Hydrokinetic Energy represents a viable source of renewable energy that harness the kinetic energy of natural currents. Our experiments show that this technology can be deployed efficiently in large sandy rivers (e.g. Mississippi River), without compromising the geomorphic equilibrium of the stream and the structural safety of the turbine foundation, even in the presence of large migrating dunes.