Browsing by Subject "Pavement design"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Adaptation of the 2002 Guide for the Design of Minnesota Low-Volume Portland Cement Concrete Pavements(Minnesota Department of Transportation, Research Services Section, 2007-06) Yut, Iliya; Husein, Shariq; Turgeon, Carly; Khazanovich, LevA new Mechanistic-Empirical Pavement Design Guide (MEPDG), also known as the 2002 Design Guide, was recently proposed in the United States. The development of such a procedure was conducted by the National Cooperative Highway Research Program (NCHRP) under sponsorship by the AASHTO. The Design Guide is a significant innovation in the way pavement design is performed. A comprehensive evaluation of the MEPDG performance predictions was conducted. It was found that the faulting model produced acceptable predictions, while the cracking model had to be adjusted. The cracking model was re-calibrated using the design and performance data for 65 pavement sections located in Minnesota, Iowa, Wisconsin, and Illinois. A prototype of the catalog of recommended design features for Minnesota low volume PCC pavements was developed using the MEPDG version 0.910. The catalog offers a variety of feasible design alternatives (PCC and base thickness, joint spacing and PCC slab width, edge support type, and dowel diameter) for a given combination of site conditions (traffic, location, and subgrade type). It is recognized, however, that version 0.910 is not the final version of the MEPDG. Therefore, the catalog should be updated after the MEPDG software is finalized.Item Concrete Strength Required to Open to Traffic(Center for Transportation Studies, University of Minnesota, 2016-01) Freeseman, Katelyn; Hoegh, Kyle; Khazanovich, LevThe current empirical methods for determining traffic-opening criteria can be overly conservative causing unnecessary construction delays and user costs. The research described here recommends innovative mechanistic based procedures for monitoring concrete early age development and evaluating the effect of early traffic opening on long-term damage accumulation. The procedure utilizes recent developments in nondestructive testing to optimize traffic opening timing without jeopardizing pavement longevity. These tasks were achieved via extensive field and laboratory experiments allowing for the analysis of variables such as curing condition and loading type with respect to the effect of early loading of concrete. The results of these efforts culminated in the development of a program that analyzes the effect of design and opening time decisions on pavement damage. The deliverable can be utilized by transportation agencies to make more informed decisions.Item Design and Construction Guidelines for Thermally Insulated Concrete Pavements(Minnesota Department of Transportation, 2013-01) Khazanovich, Lev; Balbo, Jose T.; Johanneck, Luke; Lederle, Rita; Marasteanu, Mihai; Saxena, Priyam; Tompkins, Derek; Vancura, Mary; Watson, Mark; Harvey, John; Santero, Nicholas J.; Signore, JamesThe report describes the construction and design of composite pavements as a viable design strategy to use an asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural layer as the load-carrying material. These pavements are intended for areas with heavy trucks and problem soils to increase the service life and minimize maintenance. The project focused specifically on thermally insulated concrete pavements (TICPs) (that is, composite thin AC overlays of new or structurally sound existing PCC pavements) and developed design and construction guidelines for TICPs. Specific research objectives include determining behavior of the layers of the TICP system, understanding life-cycle costs and the feasibility of TICPs, and incorporating the results into design and construction guidelines. Both construction and design guidelines are considered in light of the construction and performance of TICP test sections at the Minnesota Road Research project (MnROAD).Item Development of Data Warehouse and Applications for Continuous Vehicle Class and Weigh-in-Motion Data(Minnesota Department of Transportation, 2009-10) Kwon, Taek M.Presently, the Office of Transportation Data & Analysis (TDA) at the Minnesota Department of Transportation (Mn/DOT) manages 29 Vehicle Classification (VC) sites and 12 Weigh-in-Motion (WIM) sites installed on various Minnesota roadways. The data is collected 24/7 from all sites, resulting in a large amount of data. The total amount of data is expected to substantially grow with time due to the continuous accumulation of data from the present sites and future expansion of sites. Therefore, there is an urgent need to develop an efficient data management strategy for dealing with the present needs and future growth of this data. The solution proposed in this research project is to develop a centralized data warehouse from which all applications can acquire the data. The objective of this project was to develop software for creating a VC/WIM data warehouse and example applications that utilize it. This project was successfully completed by developing the software necessary to build the VC/WIM data warehouse and the application software packages that utilize the data. The main contribution of this project is that it provides a single access point for querying all of the Mn/DOT’s WIM and VC data, from which many more applications can be developed without concerns of proprietary binary formats.Item Effects of Seasonal Changes on Ride Quality at MnROAD(Minnesota Department of Transportation, 2008-07) Khazanovich, Lev; Bly, Peter; Shamin, Atika; Barnes, Randal J.This project studied frost heave as it relates to different pavement design parameters and ride quality deterioration. Elevations of frost pins embedded in MnROAD test sections were measured over four years. Pin elevation changes were analyzed to show the amount of frost heave and degree of frost heave uniformity within a cell. Various plots were made to show the elevation change and interquartile range of the pins over time. Statistical approaches such as visual analyses, Student-t hypothesis testing, and ANOVA analysis were used in this study to evaluate the effect of pavement design features on frost heave and roughness. Subgrade and base type, pavement thickness, and drainage capabilities are the major design factors that affect frost heave. The effects of frost heave on ride quality deterioration for flexible and rigid pavements could not be confirmed or statistically rejected in this study. No seasonal adjustment factor for IRI measurement is recommended for use in a pavement management system because no firm conclusions could be made from the data concerning a seasonal effect on IRI measurements.Item Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota(Minnesota Department of Transportation, 2009-01) Velasquez, Raul; Hoegh, Kyle; Yut, Iliya; Funk, Nova; Cochran, George; Marasteanu, Mihai; Khazanovich, LevThe recently introduced Mechanistic-Empirical Pavement Design Guide (MEPDG) and related software provide capabilities for the analysis and performance prediction of different types of flexible and rigid pavements. An important aspect of this process is the evaluation of the performance prediction models and sensitivity of the predicted distresses to various input parameters for local conditions and, if necessary, re-calibration of the performance prediction models. To achieve these objectives, the Minnesota Department of Transportation (MnDOT) and the Local Road Research Board (LRRB) initiated a study “Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota.” This report presents the results of the evaluation of default inputs, identification of deficiencies in the software, sensitivity analysis, and comparison of results to the expected limits for typical Minnesota site conditions, a wide range of pavement design features (e.g. layer thickness, material properties, etc), and the effects of different parameters on predicted pavement distresses. Since the sensitivity analysis was conducted over a span of several years and the MEPDG software underwent significant modifications, especially for flexible pavements, various versions of the MEPDG software were run. Performance prediction models of the latest version of the MEPDG 1.003 were evaluated and modified or recalibrated to reduce bias and error in performance prediction for Minnesota conditions.Item Incorporation of Reliability in Minnesota Mechanistic-Empirical Pavement Design(Minnesota Department of Transportation, 1999-07) Timm, David H.; Newcomb, David E.; Birgisson, Bjom; Galambos, Theodore V.This report documents the research that incorporated reliability analysis into the existing mechanistic-empirical (M-E) flexible pavement design method for Minnesota. Reliability in pavement design increases the probability that a pavement structure will perform as intended for the duration of its design life. The report includes a comprehensive literature review of the state-of-the-art research. The Minnesota Road Research Project (Mn/ROAD) served as the primary source of data, in addition to the literature review. This research quantified the variability of each pavement design input and developed a rational method of incorporating reliability analysis into the M-E procedure through Monte Carlo simulation. Researchers adapted the existing computer program, ROADENT, to allow the designer to perform reliability analysis for fatigue and rutting. A sensitivity analysis, using ROADENT, identified the input parameters with the greatest influence on design reliability. Comparison designs were performed to check ROADENT against the 1993 AASHTO guide and the existing Minnesota granular equivalency methods. Those comparisons showed that ROADENT produced very similar design values for rutting. However, data suggests that the fatigue performance equation will require further modification to accurately predict fatigue reliability.Item Investigation of Hot Mix Asphalt Mixtures at Mn/ROAD(Minnesota Department of Transportation, 1997-02) Stroup-Gardiner, Mary; Newcomb, David E.This report presents the material characterization for the Minnesota Road Research Project (Mn/ROAD) bituminous materials. This effort will provide the historical base line information on properties needed for the validation of future pavement evaluation and design models. The objectives of the work were to 1) Document construction of Mn/ROAD, 2) Establish a series of test methods for characterizing the materials and 3) Develop a data base of material properties to develop mechanistic pavement design procedures. Documentation on construction included mixture design, construction techniques and a summary of test results. The laboratory test methods represent a wide variety of tests developed by the Strategic Highway Research Program, the National Cooperative Highway Research Program and the Federal Highway Administration. The materials represent those tested during the mixture design, construction and post construction phases of Mn/ROAD.Item Minnesota Low Volume Road Design 1998(Minnesota Department of Transportation, 1999-09) Skok, Eugene L.; Newcomb, Dave; Timm, David H.In this project, researchers examined the current practices that local agencies use and evaluated the thickness design procedures by comparing predicted lives for the current designs with those obtained from the mechanistic-empirical design procedure ROADENT. Researchers determined current practices by sending a questionnaire to all cities and counties and visiting two counties and one city. In general, the questionnaire responses show that cities and counties use a variety of practices for the design, construction, and management of low volume pavements in Minnesota. Relative to the current designs, ROADENT predictions of fatigue behavior require a thicker design for medium and high-traffic roads than the Soil Factor design, and a thicker design for high-traffic roads than the R-Value procedure. The required thicknesses based on development of rut depth are not consistent with the current designs. To develop consistent procedures for the design, construction, and management of low volume roads in Minnesota, the report recommends converting the differences in performance predictions to thicknesses through the use of existing procedures and the mechanistic-empirical procedure; developing a best practices manual; and implementing the design procedure and manual.Item MnROAD Lessons Learned(Minnesota Department of Transportation, Research Services Section, 2007-01) Tompkins, Derek; Khazanovich, LevThe Minnesota Department of Transportation (MnDOT) began construction on the Minnesota Road Research Project (MnROAD) in 1991 and opened the full-scale pavement research facility to live traffic in 1994. Since the time of its construction, MnROAD, the first major test track since the AASHO Road Test of the 1950s and 1960s, has learned a number of lessons on behalf of the greater pavement community. As part of completing the first phase of MnROAD (its first ten years of operation), researchers at the University of Minnesota reviewed the many products of MnROAD's first phase. The Lessons Learned project involved over fifty interviews, three hundred published and unpublished reports, papers, and briefs, and an online survey of pavement professionals. This report presents an overview of MnROAD products of interest at the local, state, and national levels. Furthermore, the report provides extensive references for these products in hopes of increasing awareness of MnROAD's under-publicized contributions to pavement engineering.Item Permeable Pavements in Cold Climates: State of the Art and Cold Climate Case Studies(Center for Transportation Studies, University of Minnesota, 2015-06) Weiss, Peter T.; Kayhanian, Masoud; Khazanovich, Lev; Gulliver, John S.This document is an extensive review of full-depth permeable pavements including porous asphalt, pervious concrete, and permeable interlocking concrete pavers (PICP). Also included is a brief section on articulated concrete blocks/mats. The main topics, which have been divided into chapters, include structural and mix design, hydrologic design, hydraulic performance (i.e. infiltration capacity), maintenance needs/frequency/actions, the impact of permeable pavement on water quality, results of a highway shoulder feasibility study, knowledge gaps, and several cold climate case studies from the United States and Canada. While progress has recently been made with the relatively new permeable pavement technology, researchers have also identified many unresolved issues that are not well understood. These include a methodology to measure subgrade infiltration rates, filling data gaps related to structural integrity, construction, and related issues associated with permeable pavements, determining what maintenance activities are most effective on various pavement types and how frequently specific maintenance actions should be performed, a better understanding of the processes involved in the observed reduction of contaminant concentrations in stormwater flowing through permeable pavements, and a better understanding of the performance of permeable pavements over a time frame that better corresponds with a life-span of 20 years.Item Simplified Design Table For Minnesota Concrete Pavements(Minnesota Department of Transportation Research Services & Library, 2014-06) Tompkins, Derek; Khazanovich, LevThe project “Simplified Design Table for Minnesota Concrete Pavements” led to the creation of MnPCC-ME, a standalone 32-bit Windows executable program to replace the preexisting RigidPave. Whereas RigidPave was based upon the outdated AASHTO 1993 design procedure for rigid pavements, MnPCC-ME is based on MEPDG version 1.1, a mechanistic-empirical design procedure that accounts for the effects of traffic loading and environment. Furthermore, MnPCC-ME was localized for Minnesota pavements through: 1) the use of local climate data and weigh-in-motion traffic data; 2) the incorporation of previously conducted calibrations of the MEPDG for Minnesota pavements; and 3) the inclusion of advanced analysis features included in MnPCC-ME’s flexible design counterpart, MnPAVE. The development and source code of MnPCC-ME is detailed in this final report.