Browsing by Subject "GL13K"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item 16S RNA data for biofilm in contact with antimicrobial peptide coatings(2020-04-23) Aparicio, Conrado; Moussa, Dina G.; apari003@umn.edu; Aparicio, Conrado; Minnesota Dental Research Center for Biomaterials and BiomechanicsDual-indexed 16S rRNA gene amplicon sequencing using the V3-V4 region on the Illumina MiSeq platform 300PE for triplicate samples of biofilm from stocks of oral plaque sample grown on hydroxyapaptite discs without (CTRL) and with antimicrobial peptide (1018, DJK2, D-GL13K) coatings, treated and non-treated with PMA. This data was collected as part of the NIDCR funded project R01-DE to determine the effects of antimicrobial peptides in the microbiome of biofilms from oral plaque stocks to prevent degradation of dental restorations. The data was generated at the University of Minnesota Genomics Center and analyzed at the University of Minnesota Informatics Institute. The data is released to be of public access following submission of a manuscript presenting and analyzing this data.Item Antimicrobial Effects of GL13K Peptide Coatings on S. mutans and L. casei(2015-07) Schnitt, RebeccaBackground: Enamel breakdown around orthodontic brackets, so-called "white spot lesions"�, is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K-L and GL13K-D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K-D was effective at killing S. mutans in vitro at low doses. GL13K-D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K-D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.Item A Multi-functional st-ELR Scaffold for Dentin Regeneration(2018-12) LAN, CAIXIAPulpitis is one of the most widespread diseases in the world. Current advances in dental tissue engineering have provided an interesting alternative therapeutic approach in the field of regenerative endodontics. However, there remains a strong need to develop an optimized scaffold for supporting dentin regeneration. The objective of this PhD project is to develop a dental scaffold using elastin-like recombinamers(ELRs) to stimulate dentin regeneration while exhibiting antimicrobial ability to control potential re-infection of the pulp cavity. To provide a biomimetic scaffold that resembles the extracellular matrix in dentin tissue, we fabricated fibrous scaffold of ELRs using electrospinning technique and analyzed its ability in inducing biomimetic mineralization using the polymer-induced liquid precursor (PILP) process. The ELR scaffolds exhibited intra- and extra-fibrous mineralization, which highly mimicked the structure of mineralized native collagen in dentin. The scaffold is expected to be applied in the pulp cavity with direct contact with the pulp tissue. Therefore, we investigated the interaction between the mineralized ELR scaffold that contains statherin-derived peptide (st-ELR) and human dental pulp stem cells (hDPSCs). Proliferation and odontogenic differentiation of hDPSCs were analyzed and the study indicated that biomimetically mineralized st-ELR scaffold supported the proliferation and odontogenic differentiation of hDPSCs. Bacterial infection is considered as the major reason for the failure of implanted materials. Therefore, we functionalized st-ELR scaffold with antimicrobial peptides to prevent the potential infection caused by oral bacteria. A cysteine modified antimicrobial peptide GL13K(Cys-GL13K) was used in this study to achieve site-specific modification on the developed scaffold. First, we tethered Cys-GL13K peptides on titanium surface to analyze the properties and antimicrobial ability of immobilized peptides. A homogenous and strong coating of peptides was obtained. The tethered peptides exhibited promising antimicrobial ability against S. mutans, S. gordonii and E. faecalis. Furthermore, we bio-conjugated the peptides to st-ELR membranes using the same modification technique. Successful peptide modification was achieved, and the peptide functionalized st-ELR membrane exerted antimicrobial ability against S. mutans and S. gordonii. This research sheds light on the development and functionalization of scaffolds for the application of regenerating hard tissues such as dentin and bone. It allows the scaffold to highly resemble the architecture and physical properties of extracellular matrix in mineralized tissues. In addition, this research provides a new approach to modify the scaffold with diverse bioactive molecules to obtain multiple functions, while maintaining good interaction with native tissues.