Browsing by Subject "Axle loads"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Allowable Axle Loads on Pavements(Minnesota Department of Transportation Research Services Section, 2010-12) Bly, Peter; Tompkins, Derek; Khazanovich, LevThis report documents the development of a procedure to determine the structural adequacy and need of seasonal axle load restrictions for Minnesota low-volume roads. This procedure has been implemented into a new program, TONN2010. Since it is anticipated that the results of this study will be widely used by Mn/DOT, city, and county engineers, as well as consulting engineers involved in analysis of the falling weight deflectometer (FWD) data collected by the transportation agencies, an emphasis was made on development of a simple, easy to implement procedure. To simplify the procedure’s implementation, the number of inputs was minimized. TONN2010 utilizes pavement layer thicknesses, FWD deflection basins, air temperature of the previous day, pavement surface temperature at the time of testing, pavement location, and anticipated traffic. All the inputs required by TONN2010 can be easily obtained by the user. Using these inputs, TONN2010 proceeds to 1) backcalculate layer moduli using the backcalculation procedure developed in this study, 2) adjust the backcalculated moduli using MnPAVE temperature and seasonal adjustment factors, and 3) estimate pavement axle load capacity by mechanistic-empirical analysis. In addition to detailing TONN2010, the report further describes selection of the damage models, development of the backcalculation design procedure, determination of the critical structural responses, development of new structural rating indexes, and finally the calibration and validation of the proposed procedure.Item Effects of Implements of Husbandry (Farm Equipment) on Pavement Performance(Minnesota Department of Transportation Research Services Section, 2012-04) Lim, Jason; Azary, Andrea; Khazanovich, Lev; Wang, Shiyun; Kim, Sunghwan; Ceylan, Halil; Gopalakrishnan, KasthuriranganThe effects of farm equipment on the structural behavior of flexible and rigid pavements were investigated in this study. The project quantified the difference in pavement behavior caused by heavy farm equipment as compared to a typical 5-axle, 80 kip semi-truck. This research was conducted on full scale pavement test sections designed and constructed at the Minnesota Road Research facility (MnROAD). The testing was conducted in the spring and fall seasons to capture responses when the pavement is at its weakest state and when agricultural vehicles operate at a higher frequency, respectively. The flexible pavement sections were heavily instrumented with strain gauges and earth pressure cells to measure essential pavement responses under heavy agricultural vehicles, whereas the rigid pavement sections were instrumented with strain gauges and linear variable differential transducers (LVDTs). The full scale testing data collected in this study were used to validate and calibrate analytical models used to predict relative damage to pavements. The developed procedure uses various inputs (including axle weight, tire footprint, pavement structure, material characteristics, and climatic information) to determine the critical pavement responses (strains and deflections). An analysis was performed to determine the damage caused by various types of vehicles to the roadway when there is a need to move large amounts agricultural product.Item Weigh-Pad-Based Portable Weigh-in-Motion System User Manual(Minnesota Department of Transportation, 2016-02) Kwon, Taek M.A complete portable weigh-in-motion (PWIM) system consists of a pair of weigh-pads (one for upstream and the other for downstream), a controller which translates raw load signals to WIM data, and an optional external battery pack. The weigh-pad dimensions are one foot wide and 24 feet long, covering two lanes. This document describes how to install and remove weigh-pads using the recommended tools and setup of the controller. The operation of controller that includes initial setup and calibration is described step-by-step. The controller stores WIM data in the controller hard disk using a comma separated values (CSV) format; the details of the CSV file naming convention and column formats are described.