Browsing by Author "Guo, Silu"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Structural and chemical characterization data for Ir and Ru metal/metal-oxide thin films showing strain dependence of metal oxidation(2023-04-05) Nair, Sreejith T; Yang, Zhifei; Lee, Dooyong; Guo, Silu; Sadowski, Jerzy T; Johnson, Spencer; Saboor, Abdul; Li, Yan; Zhou, Hua; Comes, Ryan B; Jin, Wencan; Mkhoyan, Andre K; Janotti, Anderson; Jalan, Bharat; nair0074@umn.edu; Nair, Sreejith T; University of Minnesota Jalan MBE LabIn this work, the authors uncover a previously unexplored effect of substrate imposed epitaxial strain on the formation energy of a crystalline epitaxial metal oxide thin film, thereby revealing an additional tuning knob to engineer synthesis of oxide thin films of hard-to-oxidize metals.Item Supporting data for Mending Cracks Atom-by-atom in Rutile TiO2 with Electron Beam Radiolysis(2023-08-28) Guo, Silu; Yun, Hwanhui; Nair, Sreejith; Jalan, Bharat; Mkhoyan, K. Andre; mkhoyan@umn.edu; Mkhoyan, K. Andre; Materials Research Science & Engineering CenterExperimental data for a manuscript "Mending Cracks Atom-by-atom in Rutile TiO2 with Electron Beam Radiolysis". Essential data includes scanning transmission electron microscopy (STEM) raw images and electron energy-loss spectroscopy (EELS) spectrum data. Important atomic line scans data and radiolysis cross section data file are included to support our “two-step rolling” model of mobile octahedral building blocks enabling radiolysis-driven atomic migration.Item Supporting data for Temperature-dependent thermal conductivity of MBE-grown epitaxial SrSnO₃ films(2023-11-06) Zhang, Chi; Liu, Fengdeng; Guo, Silu; Zhang, Yingying; Xu, Xiaotian; Mkhoyan, Andre; Jalan, Bharat; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering CenterThis work studies the temperature-dependent thermal properties of a single crystalline SSO thin film prepared with hybrid molecular beam epitaxy. By combining time-domain thermoreflectance and Debye–Callaway modeling, physical insight into thermal transport mechanisms is provided. At room temperature, the 350-nm SSO film has a thermal conductivity of 4.4 W m¯¹ K¯¹ , ∼60% lower than those of other perovskite oxides (SrTiO₃, BaSnO₃) with the same ABO₃ structural formula. This difference is attributed to the low zone-boundary frequency of SSO, resulting from its distorted orthorhombic structure with tilted octahedra. At high temperatures, the thermal conductivity of SSO decreases with temperature following a ∼T ¯⁰∙⁵⁴ dependence, weaker than the typical T¯¹ trend dominated by the Umklapp scattering. Corresponding author for STEM data is K. Andre Mkhoyan. Corresponding author for film growth and XRD data is Bharat Jalan. Corresponding author for TDTR data is Xiaojia Wang.