A New Insight Into The Geochemistry Of Sulfur In Low Sulfate Environments

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

A New Insight Into The Geochemistry Of Sulfur In Low Sulfate Environments

Published Date

2018-08

Publisher

Type

Thesis or Dissertation

Abstract

As an essential element for life, sulfur plays an important role in the biosphere, hydrosphere, atmosphere and lithosphere. Studies of sulfur cycling have been traditionally concentrated on modern marine environments with 28mM of sulfate, yet its importance in low sulfate environments such as large freshwater systems as well as the oceans of the geologic past (>0.5 billion years ago) cannot be neglected. This thesis, through modeling and theoretical approach, aims to provide a new insight into several aspects of sulfur cycling in low sulfate environments. For example, it is widely assumed that water-column sulfate is the main sulfur source to fuel microbial sulfate reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, I show that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate and sedimentary sulfide. The results in this thesis indicate that in low sulfate environments (<500 µM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. Extrapolating the results to Archean oceans with tens of µM of sulfate, modeling results reveal that sulfite generated by mineralization of organic sulfur could fuel microbial S reduction in the absence of ambient sulfate, and hydrogen sulfide generated by mineralization of reduced organic S compounds could provide a pathway to pyrite that bypassed the microbial reduction of sulfate or sulfite. Reproducing isotopic records in the sedimentary sulfides from the rock record, modeling results show that in the low sulfate (<10 µM) environment of the Archean oceans (2.5-4 billion years ago), oxygen could have accumulated to up to 25 µM, while being consistent with the sulfur isotopic composition in Neoarchean rocks. A mass balance model coupled to a sediment diagenesis model suggests that seawater sulfate concentrations during the Proterozoic Eon (0.5-2.4 billion years ago) remained below 1.5% of modern values (<500 µM), and possibly as low as 100 µM. Using exploratory modeling of sulfur cycling, I also constrain the geochemical factors that control the fluxes of methylmercury from modern freshwater sediments. Modeling results identify oxygen, sulfate, and organic matter as leading geochemical parameters. They also suggest a critical level of oxygen at the sediment water interface, below which methylation rate dominates demethylation rate, resulting in an efflux of methylmercury into overlying water.

Description

University of Minnesota Ph.D. dissertation. 2018. Major: Water Resources Science. Advisor: Sergei Katsev. 1 computer file (PDF); 240 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Fakhraee, Mojtaba. (2018). A New Insight Into The Geochemistry Of Sulfur In Low Sulfate Environments. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/201050.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.