A quantitative study of the lift-enhancing flow field generated by an airfoil with a Gurney flap.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

A quantitative study of the lift-enhancing flow field generated by an airfoil with a Gurney flap.

Published Date

2009-11

Publisher

Type

Thesis or Dissertation

Abstract

Although it is well known that a Gurney flap affects the lift, drag, and pressure distribution along an airfoil, the mechanisms behind the changes are still not well understood. The following research seeks to understand what is causing the effects of a Gurney flap through quantitative measurements of the spatial and temporal flow details, including force balance measurements, hotwire anemometry (HWA), high resolution particle image velocimetry (HRPIV), and time resolved particle image velocimetry (TRPIV). TRPIV is used to broaden the understanding of the interaction between the various vortex shedding modes which are elicited from the regions upstream and downstream of the flap. The HWA technique is useful for its very high frequency response, and is used in the wake of the airfoil in order to gain valuable insight into the nature of the vortex shedding frequencies. Vortices generated both upstream and downstream of the Gurney flap have been observed, and the vortex interactions, which occur due to the non-phase-locked nature of the shedding modes, are analyzed. The results are interpreted in terms of the known lift increment.

Description

University of Minnesota Ph.D. dissertation. December 2009. Major: Aerospace Engineering and Mechanics. Advisor: Ellen K. Longmire. 1 computer file (PDF); xv, 180 pages, appendices A-C.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Troolin, Daniel Ryan. (2009). A quantitative study of the lift-enhancing flow field generated by an airfoil with a Gurney flap.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/59026.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.