Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Emplacement and Crystallization Histories of Cu-Ni-PGE Sulfide-mineralized Peridotites in the Eagle and Eagle East Intrusions

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Emplacement and Crystallization Histories of Cu-Ni-PGE Sulfide-mineralized Peridotites in the Eagle and Eagle East Intrusions

Published Date

2018-06

Publisher

Type

Thesis or Dissertation

Abstract

The Eagle and Eagle East intrusions, located about 40 kilometers northwest of Marquette, MI, are two small, partially exposed, sub-vertical, funnel-shaped mafic/ultramafic intrusions emplaced in Paleoproterozoic black slates. Both intrusions host economic Ni-Cu-(PGE) sulfide deposits, the Eagle intrusion in its main body and the Eagle East intrusion in its feeder at depth. The Eagle deposit has been being mined by the Lundin Mining Corporation since 2014, which is now also expanding its operation to mine the Eagle East deposit. Transmitted light petrography, scanning electron microscopy, and electron microprobe analyses were performed on samples from six drill cores in the Eagle system, three from Eagle and three from Eagle East. Lundin additionally provided whole-rock geochemistry for five of these cores at ~1.5m intervals. The concentration of Ni in olivines in the Eagle and Eagle East intrusions were measured by electron microprobe. A bimodal distribution of Ni concentration in olivine - i.e., both enriched and unenriched populations being present - may have been evidence for multiple magma pulses in the Eagle system. However, olivine in both intrusions were determined to be universally Ni-enriched, which means that this line of inquiry was not useful for determining the number of magma pulses. The cumulate nature of samples were determined by whole-rock geochemistry, wherein incompatible trace elements including Zr, and La were used as proxies for the amount of intercumulus material present in a sample, as well as by visual estimation using transmitted-light petrography. Counter to the conclusions of Ding et el. (2010), variations in incompatible trace element ratios in various rock types in the Eagle system were satisfactorily explained by the cumulate nature and high sulfide content of the samples, with no need to invoke multiple parental magmas in the explanation. The intrusive breccia (or “IBRX”) lithology present in both the Eagle and Eagle East intrusions was studied with transmitted light petrography. It was determined to occur in at least two variations. Both variations have a feldspathic lherzolite matrix with subangular clasts, but in one type heavy sulfide mineralization (up to 30% by volume) occurs in the clasts and in the other type the clasts are nearly devoid of sulfides. In both cases the clasts have high pyroxene abundances and are devoid of olivine, but clasts with high sulfide content tend to have more plagioclase and are more heavily altered. In the Eagle East intrusion, sampled clasts were only of the low-sulfide variety. The IBRX clasts may be a slower-cooling version of the PRX lithology also present in the Eagle system. Alternatively, they may be part of an older intrusion that the Eagle system parental magma cannibalized at depth during emplacement. The main body of the Eagle East intrusion was studied by petrographic examination of a core that profiled its depth. While there was no significant change in cumulate rock type, the core did show modest cryptic variation with depth. Notably, a horizon of increased olivine abundance indicated the potential recharge of the intrusion with the same, homogeneous parental magma. The lithological similarity of the Eagle and Eagle East intrusions indicates that they likely formed from the same parental magma. The main petrographic differences between the two intrusions were the poikilitic nature of clinopyroxene and the lower abundance of plagioclase in the Eagle East intrusion. These differences may be explained by the larger size and thus presumed longer cooling time of the Eagle East intrusion.

Description

University of Minnesota M.S. thesis. June 2018. Major: Geology. Advisor: James Miller. 1 computer file (PDF); ix, 161 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Mulcahy, Connor. (2018). Emplacement and Crystallization Histories of Cu-Ni-PGE Sulfide-mineralized Peridotites in the Eagle and Eagle East Intrusions. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/200118.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.