Resilient Modulus And Strength Of Base Course With Recycled Bituminous Material

Thumbnail Image

View/Download File

Persistent link to this item

View Statistics

Journal Title

Journal ISSN

Volume Title


Resilient Modulus And Strength Of Base Course With Recycled Bituminous Material

Published Date



Minnesota Department of Transportation, Research Services Section




The objective of the research was to determine the strength and deformation characteristics of base material produced from recycled asphalt pavement (RAP) and aggregate. Various samples with different ratios of RAP and aggregate base were mixed (% RAP/aggregate): 0/100, 25/75, 50/50, 75/25. Laboratory compaction testing and field monitoring indicated that gyratory compacted specimens were closer to the densities measured in the field. Resilient modulus (MR) tests were generally conducted following the National Cooperative Highway Research Program 1-28A test protocol. MR increased with increase of confining pressure, but MR showed little change with deviator stress. The specimens with 65% optimum moisture contents were stiffer than the specimens with 100% optimum moisture contents at all confining pressures. Cyclic triaxial tests were conducted at two deviator stresses, 35% and 50% of the estimated peak stress, to evaluate recoverable and permanent deformation behavior from initial loading to 5000 cycles. The specimens with RAP exhibited at least two times greater permanent deformation than the 100% aggregate material. As %RAP increased, more permanent deformation occurred. In summary, the base material produced with various %RAP content performed at a similar level to 100% aggregate in terms of MR and strength when properly compacted.


Related to




Series/Report Number

Funding information

Minnesota Department of Transportation

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Kim, Woosung; Labuz, Joseph. (2007). Resilient Modulus And Strength Of Base Course With Recycled Bituminous Material. Retrieved from the University Digital Conservancy,

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.