Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Machine Learning for Deep Brain Stimulation

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Machine Learning for Deep Brain Stimulation

Published Date

2020-02

Publisher

Type

Thesis or Dissertation

Abstract

Deep brain stimulation (DBS) is an effective treatment for a variety of neurological disorders, including Parkinson’s disease (PD). However, the success of DBS relies on selecting stimulation parameters which relieve symptoms while simultaneously avoiding stimulation-induced side-effects. Currently, DBS is programmed through a time-intensive trial-and-error process in which the clinician systematically evaluates stimulation settings, requiring hours of effort and multiple patient visits. Additionally, advances in DBS lead technology and stimulation algorithms are adding additional free parameters, further increasing the difficulty of programming these devices. This doctoral thesis advanced the programming of DBS arrays by: (1) developing the slid- ing windowed infinite Fourier transform (SWIFT), an efficient method of extracting oscillatory neural features which can be used to program DBS systems, (2) developing the Bayesian adaptive dual controller (ADC), a type of Active Learning DBS which can be used to learn optimal stimulation parameters, and (3) demonstrating the ef- ficacy of the Bayesian ADC in an animal model of PD. The primary findings of this dissertation suggest that the Bayesian ADC is capable of efficiently and autonomously learning stimulation parameters for DBS in order to optimize a selected biomarker. Furthermore, it was demonstrated that parameters learned by the Bayesian ADC performed as well as control parameters identified through a standard trial-and-error programming process. Together, these results suggest that the Bayesian ADC should be clinically translatable for tuning DBS in future studies.

Description

University of Minnesota Ph.D. dissertation. February 2020. Major: Biomedical Engineering. Advisors: Matthew Johnson, Theoden Netoff. 1 computer file (PDF); xii, 132 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Grado, Logan. (2020). Machine Learning for Deep Brain Stimulation. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/219404.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.