Targeting the Brain in Brain-Computer Interfacing: The Effect of Transcranial Current Stimulation and Control of a Physical Effector on Performance and Electrophysiology Underlying Noninvasive Brain-Computer Interfaces
2017-07
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Targeting the Brain in Brain-Computer Interfacing: The Effect of Transcranial Current Stimulation and Control of a Physical Effector on Performance and Electrophysiology Underlying Noninvasive Brain-Computer Interfaces
Authors
Published Date
2017-07
Publisher
Type
Thesis or Dissertation
Abstract
Brain-computer interfaces (BCIs) and neuromodulation technologies have recently begun to fulfill their promises of restoring function, improving rehabilitation, and enhancing abilities and learning. However, lengthy user training to achieve acceptable accuracy is a barrier to BCI acceptance and use by patients and the general population. Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technology whereby a low level of electrical current is injected into the brain to alter neural activity and has been found to improve motor learning and task performance. A barrier to optimizing behavioral effects of tDCS is that we do not yet understand how neural networks are affected by stimulation and how stimulation interacts with ongoing endogenous activity. The purpose of this dissertation was to elucidate strategies to improve BCI control by targeting the user through two approaches: 1. Subject control of a robotic arm to enhance user motivation and 2. tDCS application to improve behavioral outcomes and alter networks underlying sensorimotor rhythm-based BCI performance. The primary results illustrate that targeted tDCS of the motor network interacts with task specific neural activity to improve BCI performance and alter neural electrophysiology. This effect on neural activity extended across the task network, beyond the area of direct stimulation, and altered connectivity unilaterally and bilaterally between frontal and parietal cortical regions. These findings suggest targeted neuromodulation interacts with endogenous neural activity and can be used to improve motor-cognitive task performance.
Description
University of Minnesota Ph.D. dissertation. July 2017. Major: Biomedical Engineering. Advisor: Bin He. 1 computer file (PDF); vii, 123 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Baxter, Bryan. (2017). Targeting the Brain in Brain-Computer Interfacing: The Effect of Transcranial Current Stimulation and Control of a Physical Effector on Performance and Electrophysiology Underlying Noninvasive Brain-Computer Interfaces. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/206688.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.