Wakota Bridge Thermal Monitoring Program Part I: Analysis and Monitoring Plan
No Thumbnail Available
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Wakota Bridge Thermal Monitoring Program Part I: Analysis and Monitoring Plan
Published Date
2013-05
Publisher
Minnesota Department of Transportation
Type
Report
Abstract
In this work, a common refined design method is evaluated with respect to a recently constructed bridge. Two
finite element models of the Wakota Bridge in South St. Paul, Minnesota, were produced, one using a design level
program (SAP2000) and the other using a research level program (ABAQUS). These models were verified with
respect to each other using linearly elastic materials and were found to behave similarly. After this verification, an
arbitrary temperature load was applied to each model and the refined design method was evaluated for accuracy of
reduced section properties with respect to the more descriptive progressive cracking solution simulated by
ABAQUS. The refined design method was employed using two, four, and six stiffness segments at which stiffness
is evaluated along the height of the pier walls. It was seen that accuracy increased as the number of stiffness
segments increased and that four segments seemed to balance accuracy and time-commitment by the engineer
adequately.
A staged construction model of the Wakota Bridge was also built, using the design level program, which
incorporates all time-dependent effects of the construction sequence as well as locked-in forces. A pile analysis
was performed and appropriate rotational springs were found for Foundations 2 and 3. A simplified method for the
determination of the rotational springs is discussed, and a range of effective lengths was found for use with this
procedure. The staged construction model is used for field data correlation in Part two of this report.
The staged construction model was also used to evaluate the different design options as described in the
AASHTO LRFD. The two options given for accounting for reduced section properties were evaluated and
compared. The refined analysis option and gross section option were compared for the Wakota Bridge and are
shown to correlate to within about 10%. The two temperature application methods (Procedure A and B in the
AASHTO LRFD) were also compared. As expected, Procedure B produced much larger design moments than that
of Procedure A.
Description
Related to
Replaces
License
Collections
Funding information
Minnesota Department of Transportation
Isbn identifier
Doi identifier
Previously Published Citation
Suggested citation
Scheevel, Christopher J.; Morris, Krista M.; Schultz, Arturo E.. (2013). Wakota Bridge Thermal Monitoring Program Part I: Analysis and Monitoring Plan. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/153795.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.