Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: Error analysis under minimum regularities

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: Error analysis under minimum regularities

Published Date

2001-07

Publisher

Type

Abstract

In this first part of a series, we propose and analyze, under minimum regularity assumptions, a semi-discrete (in time) scheme and a fully discrete mixed finite element scheme for the Cahn-Hilliard equation $u_t+\Delta (\varepsilon \Delta u -{\varepsilon}^{-1}f(u))=0$ arising from phase transition in materials science, where $\vepsi$ is a small parameter known as an ``interaction length". The primary goal of this paper is to establish some useful a priori error estimates for the proposed numerical methods, in particular, by focusing on the dependence of the error bounds on $\varepsilon$. Quasi-optimal order error bounds are shown for the semi-discrete and fully discrete schemes under different constraints on the mesh size $h$ and the local time step size $k_m$ of the stretched time grid, and minimum regularity assumptions on the initial function $u_0$ and domain $\Omega$. In particular, all our error bounds depend on $\frac{1}{\varepsilon}$ only in some lower polynomial order for small $\varepsilon$. The cruxes of the analysis are to establish stability estimates for the discrete solutions, to use a spectrum estimate result of Alikakos and Fusco [3] and Chen [15], and to establish a discrete counterpart of it for a linearized Cahn-Hilliard operator to handle the nonlinear term on the stretched time grid. It is this polynomial dependency of the error bounds that paves the way for us to establish convergence of the numerical solution to the solution of the Hele-Shaw (Mullins-Sekerka) problem (as $\varepsilon \searrow 0$) in Part II \cite{XA3} of the series.

Keywords

Description

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Feng, Xiaobing; Prohl, Andreas. (2001). Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: Error analysis under minimum regularities. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/3659.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.