Proteasome activation by the 19S regulatory particle: structural dynamics of 26S assembly and substrate recognition

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Proteasome activation by the 19S regulatory particle: structural dynamics of 26S assembly and substrate recognition

Published Date

2013-06

Publisher

Type

Thesis or Dissertation

Abstract

Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes ranging from cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the last decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, a large number of both permanent and transient RP components with specialized functional roles are critical for proteasome function. This research investigates the dynamic nature of protein-protein interactions involved in proteasome assembly and substrate recruitment, and how they provide context to our current understanding of proteasome activation by the RP.

Description

University of Minnesota Ph.D. dissertation. June 2013. Major:Biochemistry, Molecular Bio, and Biophysics. Advisor: Kylie J. Walters, PhD. 1 computer file (PDF); xi, 126 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Ehlinger, Aaron Christopher. (2013). Proteasome activation by the 19S regulatory particle: structural dynamics of 26S assembly and substrate recognition. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/155672.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.