Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Trade‐offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Trade‐offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility

Published Date

2016

Publisher

Wiley

Type

Article

Abstract

Plant adaptation to gradients of light availability involves a well-studied functional trade-off, as does adaptation to gradients of nutrient availability. However, little is known about how these two major trade-offs interact, and thus, it remains unclear whether and how the nature of the growth–shade tolerance trade-off differs on soils of contrasting fertility. We asked whether juvenile growth–shade tolerance trade-offs differed in slope and elevation between tree assemblages on nutrient-rich basalt and nutrient-poor rhyolite soils in an Australian subtropical rain forest. We measured the growth of, and the range of light environments occupied by, juveniles (40–120 cm tall) of eight basalt specialists, six rhyolite specialists, and one generalist that was common on both substrates. In situ minimum light requirements were estimated from the 5th percentile of the distribution of naturally regenerated juveniles in relation to daily light transmittance. Stem growth was measured for 12–16 months across a wide range of light environments to estimate the light compensation point of growth of each species. Light compensation points of growth showed nearly a 1 : 1 correspondence with in situ minimum light requirements of species, indicating that whole-plant carbon balance is a key driver of ecological success in low light. Minimum light requirements were negatively correlated with relative growth rate in low light, but correlated positively with growth in high light. Soil type had no effect on either the slope or the elevation of this trade-off, all species aligning around a common growth–shade tolerance trade-off, but our results do show a wider range of growth rates and shade tolerance on the nutrient-rich basalt soil than on the nutrient-poor rhyolite. Our results suggest that adaptation to light availability involves fundamentally similar trade-offs on these two substrates of differing fertility. However, a wider range of growth rates and shade tolerance on the nutrient-rich basalt soil than on the nutrient-poor rhyolite may help to explain the higher species richness and greater structural complexity of forest stands on the former substrate.

Description

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

10.1111/1365-2435.12573

Previously Published Citation

Sendall, K., Lusk, C., & Reich, P. (2016). Trade‐offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Functional Ecology, 30(6), 845-855.

Other identifiers

Suggested citation

Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B. (2016). Trade‐offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Retrieved from the University Digital Conservancy, 10.1111/1365-2435.12573.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.