Freeway Network Traffic Detection and Monitoring Incidents
2007-10
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Freeway Network Traffic Detection and Monitoring Incidents
Published Date
2007-10
Publisher
Minnesota Department of Transportation
Type
Report
Abstract
We propose methods to distinguish between moving cast shadows and moving foreground objects in video sequences. Shadow detection is an important part of any surveillance system as it makes object shape recovery possible, as well as improves accuracy of other statistics collection systems. As most such systems assume video frames without shadows, shadows must be dealt with beforehand. We propose a multi-level shadow identification scheme that is generally applicable without restrictions on the number of light sources, illumination conditions, surface orientations, and object sizes. In the first level, we use a background segmentation technique to identify foreground regions that include moving shadows. In the second step, pixel-based decisions are made by comparing the current frame with the background model to distinguish between shadows and actual foreground. In the third step, this result is improved using blob-level reasoning that works on geometric constraints of identified shadow and foreground blobs. Results on various sequences under different illumination conditions show the success of the proposed approach. Second, we propose methods for physical placement of cameras in a site so as to make the most of the number of cameras available.
Keywords
Description
Related to
Replaces
License
Collections
Series/Report Number
MnDOT 2007-40
Funding information
Minnesota Department of Transportation
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Joshi, Ajay J.; Atev, Stefan; Fehr, Duc; Drenner, Andrew; Bodor, Robert; Masoud, Osama; Papanikolopoulos, Nikolaos P.. (2007). Freeway Network Traffic Detection and Monitoring Incidents. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/5593.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.