Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Predicting the effects of climate change on water yield and forest production in the northeastern United States

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Predicting the effects of climate change on water yield and forest production in the northeastern United States

Published Date

1995

Publisher

Type

Article

Abstract

Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region.

Description

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

10.3354/cr005207

Previously Published Citation

Aber J. D., S. V. Ollinger, C. A. Federer, P. B. Reich, M. L. Goulden, D. W. Kicklighter, J. M. Melillo, and R. G. Lathrop. 1995. Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Research 5:207-222.

Other identifiers

Suggested citation

Aber, John D; Ollinger, Scott V; Federer, C. Anthony; Reich, Peter B; Goulden, Michael L; Kicklighter, David W; Melillo, Jerry M; Lathrop, Richard G Jr. (1995). Predicting the effects of climate change on water yield and forest production in the northeastern United States. Retrieved from the University Digital Conservancy, 10.3354/cr005207.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.