Eigenvalue shrinkage in principal components based factor analysis
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Eigenvalue shrinkage in principal components based factor analysis
Alternative title
Authors
Published Date
1984
Publisher
Type
Article
Abstract
The concept of shrinkage, as (1) a statistical phenomenon
of estimator bias, and (2) a reduction in explained
variance resulting from cross-validation, is explored
for statistics based on sample eigenvalues.
Analytic solutions and previous research imply that the
magnitude of eigenvalue shrinkage is a function of the
type of shrinkage, sample size, the number of variables
in the correlation matrix, the ordinal root position,
the population eigenstructure, and the choice of
principal components analysis or principal factors
analysis. Hypotheses relating these specific independent
variables to the magnitude of shrinkage were
tested by means of a monte carlo simulation. In particular,
the independent variable of population eigenstructure
is shown to have an important effect on
shrinkage. Finally, regression equations are derived
that describe the linear relation of population and
cross-validated eigenvalues to the original eigenvalues,
sample size, ordinal position, and the number of variables
factored. These equations are a valuable tool that
allows researchers to accurately predict eigenvalue
shrinkage based on available sample information.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Bobko, Philip & Schemmer, F. Mark. (1984). Eigenvalue shrinkage in principal components based factor analysis. Applied Psychological Measurement, 8, 439-451. doi:10.1177/014662168400800408
Other identifiers
doi:10.1177/014662168400800408
Suggested citation
Bobko, Philip; Schemmer, F. Mark. (1984). Eigenvalue shrinkage in principal components based factor analysis. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/101996.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.