Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Data for Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning

Loading...
Thumbnail Image
Statistics
View Statistics

Collection period

2021-05-17

Date completed

Date updated

Time period coverage

Geographic coverage

Source information

Journal Title

Journal ISSN

Volume Title

Title

Data for Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning

Published Date

2021-05-19

Author Contact

Siepmann, J. Ilja
siepmann@umn.edu

Type

Dataset
Experimental Data
Programming Software Code
Simulation Data

Abstract

Adsorption using nanoporous materials is one of the emerging technologies for hydrogen storage in fuel cell vehicles, and efficiently identifying the optimal storage temperature requires modeling hydrogen loading as a continuous function of pressure and temperature. Using data obtained from high-throughput Monte Carlo simulations for zeolites, metal–organic frameworks, and hyper-cross-linked polymers, we develop a meta-learning model which jointly predicts the adsorption loading for multiple materials over wide ranges of pressure and temperature. Meta-learning gives higher accuracy and improved generalization compared to fitting a model separately to each material. Here, we apply the meta-learning model to identify the optimal hydrogen storage temperature with the highest working capacity for a given pressure difference. Materials with high optimal temperatures are found closer in the fingerprint space and exhibit high isosteric heats of adsorption. Our method and results provide new guidelines toward the design of hydrogen storage materials and a new route to incorporate machine learning into high-throughput materials discovery.

Description

SorbMetaML software code, simulation and experimental data, and IPython notebooks to reproduce the results in the manuscript "Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning".

Referenced by

Sun, Yangzesheng, DeJaco, Robert F, Li, Zhao, Tang, Dai, Glante, Stephan, Sholl, David S, . . . Siepmann, J. Ilja. (2021). Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Science Advances, 7(30), Science advances, 2021-07-01, Vol.7 (30).
https://doi.org/10.1126/sciadv.abg3983

Related to

Replaces

item.page.isreplacedby

Publisher

Funding information

This research was primarily supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-17ER16362. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. Additional computer resources were provided by the Minnesota Supercomputing Institute at the University of Minnesota, by the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of Technology, and by the Quest high-performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology. The experimental work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 416229255 – SFB 1411. The authors thank Collin Bunner for the development of the three-site model for hydrogen and Tao Yang for help with the equation of state calculations.

item.page.sponsorshipfunderid

item.page.sponsorshipfundingagency

item.page.sponsorshipgrant

Previously Published Citation

Other identifiers

Suggested citation

Sun, Yangzesheng; DeJaco, Robert F; Li, Zhao; Tang, Dai; Glante, Stephan; Sholl, David S; Colina, Coray M; Snurr, Randall Q; Thommes, Matthias; Hartmann, Martin; Siepmann, J Ilja. (2021). Data for Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Retrieved from the Data Repository for the University of Minnesota (DRUM), https://doi.org/10.13020/q3gy-ty02.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.