Browsing by Subject "Water resources"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Bibliography of Water, Land and Socioeconomic Information(1974-05) Green, Janet C; Grant, Christabel D; Neubert, Barbara AThis bibliography represents a first attempt to identify all the sources of information about the Lake Superior basin in Minnesota that would be useful to planners, managers and researchers from a wide spectrum of disciplines.Item A Changing Climate on Minnesota’s North Shore: Identifying Values, Concerns, & Actions for the Protection & Restoration of Water(2019-12) Rutledge, AnnamarieCommunity resilience along Minnesota’s North Shore depends upon freshwater ecosystems and the services they provide. Climate change threatens many ecosystem benefits and there is uncertainty regarding how water resources will be affected by a changing climate. By conducting a community design charrette on the North Shore, we identified values, concerns, and actions for water resources through three activities: a pre-survey, Q sort, and collage exercise. The collage exercise brought in human-inspired ideas such as fragility and the North Shore as an identify, a home, and place of work. Based on the results of the Q sort, the study group resonated with the biospheric typology the most, followed by altruistic. The Q sort also generated three narratives that assist in understanding opinion clusters: protection realist, cultural preservationist, and provisioning utilitarian. Consensus statements from the Q sort included natural systems and processes to be sustained and habitat for native fish and wildlife to survive. Out of four water program funding areas, safe drinking water and healthy fish and wildlife populations were identified as top priorities. These findings provide insight into the perspectives of North Shore stakeholders and can be used to inform action and investments in water resources and build productive, collaborative relationships.Item Climate Change Impacts on the Water Resources of American Indians and Alaska Natives in the U.S.(2013) Cozzetto, K; Chief, K; Kittmer, K; Brubaker, M; Gough, R; Souza, K; Ettawageshik, F; Wotkyns, S; Opitz-Stapleton, S; Duren, S; Chavan, PThis informative paper links the perspectives and concerns of American Indians with predictions of climate change impacts on natural resources and Native communities. The report cites current and predicted impacts on the Fond du Lac Reservation in northeastern Minnesota, referencing several local sources and tribal authorities. Extracts of key points are reproduced below. "This paper provides an overview of climate change impacts on tribal water resources and the subsequent cascading effects on the livelihoods and cultures of American Indians and Alaska Natives living on tribal lands in the U.S. A hazards and vulnerability framework for understanding these impacts is first presented followed by context on the framework components, including climate, hydrologic, and ecosystem changes (i.e. hazards) and tribe-specific vulnerability factors (socioeconomic, political, infrastructural, environmental, spiritual and cultural), which when combined with hazards lead to impacts. Next regional summaries of impacts around the U.S. are discussed. Although each tribal community experiences unique sets of impacts because of their individual history, culture, and geographic setting, many of the observed impacts are common among different groups and can be categorized as impacts on—1) water supply and management (including water sources and infrastructure), 2) aquatic species important for culture and subsistence, 3) ranching and agriculture particularly from climate extremes (e.g., droughts, floods), 4) tribal sovereignty and rights associated with water resources, fishing, hunting, and gathering, and 5) soil quality (e.g., from coastal and riverine erosion prompting tribal relocation or from drought-related land degradation). The paper finishes by highlighting potentially relevant research questions based on the five impact categories. The Midwest (MW) is the location of the five lakes comprising the Great Lakes that together form Earth’s largest surface freshwater system. Thirty federally recognized tribes live in MW states and depend on this resource. Ceremonies honoring the waters as the life-blood of Mother Earth are held throughout the region. MW Tribes depend on the waters for subsistence and commercial fishing and for water-based plant materials for traditional crafts and artwork. Additionally, most MW tribes now operate gaming facilities and other tourism enterprises that rely heavily upon water for aesthetic and recreational uses. Many MW tribes consider climate change adaptation to be one of the most important long-range environmental issues for tribal nations. Michigan tribes, for instance, have worked with the state to negotiate and sign the May 12, 2004 Intergovernmental Accord between the Federally Recognized Indian Tribes in Michigan and the Governor of the State of Michigan Concerning Protection of Shared Water Resources and the June 11, 2009 Intergovernmental Accord between the Tribal Leaders of the Federally Recognized Indian Tribes in Michigan and the Governor of Michigan to Address the Crucial Issue of Climate Change. Biannual meetings are held between the state and tribes to discuss shared responsibilities and potential cooperative efforts. Impacts on MW tribes are diverse. Key impacts are related to flora and fauna important for diet, acknowledging clan responsibilities, social and mental health, and the exercise of treaty rights. Traditional healers in the region, for instance, have noted that lack of moisture and unreliable springtime temperatures have caused significant wild and cultivated crop losses. Wild rice (manoomin) is a sacred food of great importance to the Ojibwe of the Great Lakes area and may be detrimentally affected by climate change. In the Ojibwe Migration Story, The Great Mystery foretold the coming of the light-skinned race and instructed the Ojibwe to journey westward until they found ‘the food that grows on water.’ Since the 1900s, the loss of wild rice acreage to mining, dams, and other activities has been substantial. Warmer temperatures could cause further losses by reducing seed dormancy, favoring invasive, out-competing plants, and being conducive to brown spot disease. Water levels also influence rice survival. Extremely low Lake Superior levels in 2007 forced the Bad River Band of the Lake Superior Tribe of Chippewa (WI) to cancel its annual wild rice harvest due to dramatic crop reductions. A 2012 flood led to near total wild rice crop failure on the Fond du Lac Reservation. Tribes in the Great Lakes area rely on treaty fishing, hunting, and gathering rights. The exercise of these rights requires considerable attention to environmental issues, including climate changes that affect species and habitats. These rights have been the subject of several court cases, which have resulted in decisions upholding tribal rights. Native American tribes need relevant and culturally appropriate monitoring, assessment, and research on their waters and lands and to develop or be included in the development of contingency, management, and mitigation plans. Tribes also greatly need actual implementation of projects. Although climate change preparedness can take place as a stand-alone effort, climate change considerations can be included as part of planning and implementation that is already occurring. Tribes or intertribal organizations must decide what constitutes relevant work. We propose research questions that might be significant for tribes based on the five impact categories. These include examples of science, policy, and social science questions related both to further identifying impacts and contributing climate and vulnerability factors and to identifying adaptation strategies."Item Hydrology and Water Quality of the Grand Portage Reservation, Northeastern Minnesota, 1991-2000(2002) Winterstein, Thomas AThis is a technical geo-hydrologic study of water resources on the Grand Portage Reservation. There are few references to human uses of water resources, or to anthropogenic factors. The abstract with key points are extracted and reproduced below. Abstract: “The Grand Portage Reservation is located in northeastern Cook County, Minnesota at the boundary between Minnesota, USA, and Ontario, Canada. Between 1991 and 2000 the U.S. Geological Survey conducted a series of studies, with the cooperation with Grand Portage Band of Chippewa, to describe the water resources of the Grand Portage Reservation. Ground water moves primarily through fractures in the bedrock, probably in three ground-water systems: local, regional, and deep. Lake Superior is thought to be the discharge point for brines in the deep ground-water flow system. The watersheds in the Grand Portage Reservation are small and steep; consequently streams in the Grand Portage Reservation tend to be flashy. Lake stages rise and fall with rainfall. The pH of water in the Reservation is generally alkaline (pH greater than 7.0). The alkalinity of water in the Reservation is low. Concentrations of major ions are much greater in ground water than in spring water and surface water. The ionic composition of water in the Reservation differs depending upon the source of the water. Water from 11 of the 20 wells sampled are a calcium-sodium-chloride type. Water from wells GW-2, GW-7, and GW-11 had much greater specific conductance concentrations of major ions compared to the other wells. Some spring water (SP-1, SP-3, SP-4, SP-6, and SP-8) is calcium-bicarbonate type like surface water, whereas other spring water (SP-5 and SP-7) is similar to the calcium-sodium-chloride type occurring in samples from about one-half the wells. The major chemical constituents in surface water are bicarbonate, calcium, and magnesium. Measured tritium and sulfur hexafluoride (SF6) concentrations in water samples from springs and wells were used to determine the recharge age of the sampled water. The recharge ages of two of the wells sampled for tritium are before 1953. The recharge ages of the remaining 10 samples for tritium are probably after 1970. The recharge ages of seven SF6 samples were between 1973 and 1998.”Item Pumped Hydro Energy Storage (PHES) Using Abandoned Mine Pits on the Mesabi Iron Range of Minnesota – Final Report(University of Minnesota Duluth, 2011) Fosnacht, Donald RThis project focuses on developing an energy storage capability within Minnesota that will enable a larger build‐out of variable renewable generation sources. Currently, a significant challenge associated with the predominant renewable resource in our region (wind) is the variable and off‐peak nature of the energy generated. This feature of some renewable generation systems can, unfortunately, cause: (1) the need to build new fossil fuel generating facilities; (2) operation of existing fossil fuel generating facilities at inefficient levels; (3) transmission grid instability and unreliability; and (4) higher electricity rates. Energy storage is key to overcoming these problems. Currently, the only viable means of storing energy on a large scale are through pumped hydro energy storage (PHES), compressed air storage systems or liquid sodium sulfide battery systems. Fortunately, Minnesota has a unique and largely untapped resource for PHES in the form of idled taconite mines on the Mesabi Iron Range. The goal of this research project was to determine the potential viability, environmental sustainability and societal benefits of PHES as a vital, enabling technology for wind turbine‐based power generation. The intent of this research is to provide a clear roadmap for PHES development in Minnesota. The project is multifaceted and draws resources across the University System and from key industrial partners: Great River Energy and Minnesota Power. The results from the project provide vital information to decision makers on the potential of PHES and give guidance on how the technology can be implemented using the unique assets of the Minnesota Iron Ranges so that renewable mandates and green house gas reduction can be effectively accomplished. The results show that the topography and water resources exist at various sites that could allow a 100 to 200 MW facility to be constructed if the overall economic, mineral rights, and environmental issues associated with a given site can be properly managed. The report delves into the possibilities and outlines selection criteria that can be used for site selection. Other information is developed to compare the potential economic impact of implementation of the project within the constraints of the factors that can be monetized using the current policy environment. Finally, potential life cycle, regulatory, environmental, and permitting issues that are associated with implementation of the concept are discussed.Item Water Resources in the Vicinity of Municipalities on the Eastern Mesabi Iron Range and the Vermillion Iron Range in Northeastern Minnesota(1962) Cotter, R D; Young, H L; Petri, L R; Prior, C HThis historical document contains assessments of water supply for Aurora, Hoyt Lakes, Babbitt, Tower-Soudan and Ely from fifty years ago. While it does not describe human uses of water resources at the time, it does contain information about aquifers and ground water resources that could potentially be used for industrial, municipal or recreational purposes. "This report describes existing and potential water supplies on the eastern Mesabi and Vermilion Iron Ranges, northeastern Minnesota. Increased supplies of water are needed for expansion and diversification of the economy of the iron ranges. Specifically, supplies are needed for taconite processing, wood and peat processing, and municipal expansion. This investigation made in cooperation with the Minnesota Department of Iron Range Resources and Rehabilitation indicates that in some areas large quantities of water are available from both ground and surface sources. The most productive aquifers are the Biwabik Iron-Formation and the stratified glacial drift. East of Colby Lake, the Biwabik is not an important aquifer. On the Vermilion Iron Range, this formation is absent, and the glacial drift is commonly too thin to produce the quantities available on the Mesabi Range. Bodies of stratified drift, believed by the authors to be potential sources for large ground-water supplies, are outlined as numbered areas. Their boundaries are drawn on the basis of topography, geologic mapping, test drilling, and test pumping. The accuracy of the assessment of the ground-water supplies in each numbered area is proportional to the subsurface control. Where adequate pumpage data are available, specific capacities of wells are noted. Multiplying the specific capacity by the maximum allowable drawdown will give the short-term maximum yield of a well. Specific capacities decrease with an increase in time and pumping rate. Specific capacities of wells completed in artesian aquifers should not be compared with those of wells completed in water-table aquifers, because, in otherwise identical aquifers, the value obtained for a well in the artesian aquifer would be much lower. The geologic sections in this report are based on the indicated testhole information and open-pit mine exposures. Identification of glacial deposits from drill cuttings and correlation of deposits between test holes is tenuous. However, the sections show the sequence and general lithology that probably would be penetrated in a drill hole along the line of section. Surface-water supplies in the eastern Mesabi and Vermilion Iron Ranges are good. In the southwestern part of the area of this report, the Embarrass, St. Louis, and Partridge Rivers and Second Creek are good potential supplies. Vermilion Lake is a very large untapped potential supply in the northwest. The eastern part has a network of lakes and river systems available for utilization. Records of flow for eight gauging stations are presented. The quality of ground water and surface water is adequate for many industrial uses. Ground water commonly has a high concentration of iron and manganese and is hard. Surface water commonly has a high concentration of iron and is colored. Analyses of water from many sources are included."Item Water Resources of the Fond du Lac Indian Reservation, East-Central Minnesota(1989) Ruhl, James F; Fond du Lac Indian Reservation Business CommitteeThis interesting report presents the findings of a hydrologic study of the Fond du Lac Indian Reservation. The study is the outcome of a 1978 Federal mandate to the Bureau of Indian Affairs to review Indian water-rights claims in reservations throughout the United States. The Fond du Lac Indian Reservation study, done by the U. S. Geological Survey in cooperation with the Fond du Lac Indian Reservation Business Committee, is the first of the these studies undertaken in Minnesota under the Federal mandate. The report notes that ground water resources derive from three aquafers, and that surface waters derive from wetlands and surficial waters within the St. Louis River watershed. Except for a small number of well-water samples, water quality was found to be within EPA limits for pollutants and was determined to be safe for human and animal consumption. A few wells had elevated levels of lead and manganese; four principal streams contained E. coli and Streptococcus.