Browsing by Subject "Water quality"
Now showing 1 - 20 of 71
- Results Per Page
- Sort Options
Item 21st Avenue West Remediation to Restoration Project: Biological Survey and Hydrodynamic Modeling Results(University of Minnesota Duluth, 2012) Host, George E; Reschke, Carol; Brady, Valerie; Breneman, Dan; Dumke, Josh; Niemi, Gerald J; Austin, Jay; James, Matthew; Johnson, Lucinda BThe lower 21 miles of the St. Louis River, the largest U.S. tributary to Lake Superior, form the 4856 ha St. Louis River estuary. Despite the effects of more than 100 years of industrialized and urban development as a major Great Lakes port, the estuary remains the most significant source of biological productivity for western Lake Superior, and provides important wetland, sand beach, forested, and aquatic habitat types for a wide variety of fish and wildlife communities. The lower St. Louis River and surrounding watershed were designated an “Area of Concern” (AOC) under the Great Lakes Water Quality Agreement in 1989 because of the presence of chemical contaminants, poor water quality, reduced fish and wildlife populations, and habitat loss. Nine Beneficial Use Impairments (BUIs) have been identified in the AOC, including: Loss of Fish and Wildlife Habitat, Degraded Fish and Wildlife Populations, Degradation of Benthos, and Fish Tumors and Deformities. The St. Louis River Citizens Action Committee, now the St. Louis River Alliance (SLRA), was formed in 1996 to facilitate meeting the needs of the AOC. Following the recommendations of the St. Louis River AOC Stage II Remedial Action Plan, the SLRA completed the Lower St. Louis River Habitat Plan (Habitat Plan) in 2002 as “an estuary-wide guide for resource management and conservation that would lead to adequate representation, function, and protection of ecological systems in the St. Louis River, so as to sustain biological productivity, native biodiversity, and ecological integrity.” The SLRA also facilitated development of “Delisting Targets” for each BUI in the St. Louis River AOC in December 2008. The Habitat Plan identified several sites within the AOC with significant habitat limitations. One of these sites, the “21st Avenue West Habitat Complex” (approximately 215 ha; Map 1), was identified by a focus group within the SLRA Habitat Workgroup as a priority for a “remediation-to-restoration” project. The focus group subsequently developed a general description of desired future ecological conditions at the 21st Avenue West Habitat Complex, hereafter referred to as the ‘Project Area’, including known present conditions and limiting factors of the area. In addition, the focus group recommended a process to develop specific plans and actions to achieve the desired outcomes at the site. As the next step toward the creation of an “Ecological Design” for the Project Area, Natural Resource Research Institute researchers, in cooperation with USFWS, USEPA, MPCA, MnDNR, and other partners, sampled the 21st Avenue West site in late summer of 2011 to establish baseline information on vegetation, sediment types, benthic macroinvertebrates, toxins and bird usage of the area. This work will inform development of an ecological design that will allow assessment of restoration scenarios in the Project Area. The project will build on the 40th Ave West Remediation to Restoration effort, which developed an aquatic vegetation model based on depth, energy environment (predicted from a fetch model), water clarity, and other environmental factors. The model allows the evaluation of restoration scenarios involving changes in bathymetry, remediation or enhancement of substrate, reduction in wave energy, and other strategies. In this report we also incorporate a hydrodynamic model of the estuary to inform the ecological design process. Relationships between vegetation and the macroinvertebrate and avian communities will provide information on the efficacy of these strategies in remediating and restoring overall habitat and biological productivity in the 21st Avenue West Habitat Complex. This project was funded under USFWS Cooperative Agreement Number F11AC00517; full details of the project can be found in Attachment 1 of that Agreement.Item A 250-year assessment of human impacts on Lake Superior: an updated paleolimnological perspective(2013-05) Chraibi, Victoria Lindsay ShawTo understand environmental conditions in Lake Superior over the last two centuries, we conducted a paleolimnological study on two sediment cores collected in the eastern and western regions of the lake. We examined the diatom community assemblages, trace metals, sediment characteristics, and GIS-reconstructed human land use to evaluate the historical impacts of human activities. During European settlement and agricultural development, there is clear indication the diatom community reorganized due to nutrient enrichment. Trace metal profiles tracked a period of mining and ore processing which temporarily increased metal loads to the lake in the mid- to late-20th century. In recent decades, more oligotrophic diatom species were favored, suggesting nutrient decreases associated with remedial activities. The diatom community has reorganized to be dominated by Cyclotella species, providing evidence that water quality changes are being influenced by atmospheric nitrogen deposition and changes in the lake's physical and chemical processes associated with climate change.Item 40th Avenue West Remediation to Restoration Project: Biological Survey Results(University of Minnesota Duluth, 2010-11) Brady, Valerie; Reschke, Carol; Breneman, Dan; Host, George E; Johnson, Lucinda BThe lower 21 miles of the St. Louis River, the largest U.S. tributary to Lake Superior, form the 4856 ha St. Louis River estuary. Despite the effects of more than 100 years of industrialized and urban development as a major Great Lakes port, the estuary remains the most significant source of biological productivity for western Lake Superior, and provides important wetland, sand beach, forested, and aquatic habitat types for a wide variety of fish and wildlife communities. The lower St. Louis River and surrounding watershed were designated an “Area of Concern” (AOC) under the Great Lakes Water Quality Agreement in 1989 because of the presence of chemical contaminants, poor water quality, reduced fish and wildlife populations, and habitat loss. Nine Beneficial Use Impairments (BUIs) have been identified in the AOC, including: Loss of Fish and Wildlife Habitat, Degraded Fish and Wildlife Populations, Degradation of Benthos, and Fish Tumors and Deformities. The St. Louis River Citizens Action Committee, now the St. Louis River Alliance (SLRA), was formed in 1996 to facilitate meeting the needs of the AOC. Following the recommendations of the St. Louis River AOC Stage II Remedial Action Plan, the SLRA completed the Lower St. Louis River Habitat Plan (Habitat Plan) in 2002 as “an estuarywide guide for resource management and conservation that would lead to adequate representation, function, and protection of ecological systems in the St. Louis River, so as to sustain biological productivity, native biodiversity, and ecological integrity.” The SLRA also facilitated development of “Delisting Targets” for each BUI in the St. Louis River AOC in December 2008. The Habitat Plan identified several sites within the AOC with significant habitat limitations. One of these sites, the “40th Avenue West Habitat Complex”(approximately 130 ha; Figure 1), was identified by a focus group within the SLRA Habitat Workgroup as a priority for a “remediation- to-restoration” project. The focus group subsequently developed a general description of desired future ecological conditions at the 40th Avenue West Habitat Complex, hereafter referred to as the ‘Project Area’,including known present conditions and limiting factors of the area. In addition, the focus group recommended a process to develop specific plans and actions to achieve the desired outcomes at the site. As the next step toward the creation of an “Ecological Design” for the Project Area, Natural Resource Research Institute researchers, in cooperation with USFWS, USEPA, MPCA, MnDNR, and other partners, sampled the 40th Avenue West site during the late summer and fall of 2010 to establish baseline information on vegetation, sediment types, benthic macroinvertebrates, and bird usage of the area. Vegetation, macroinvertebrates, and sediment characterization were also completed for five Reference Areas selected by project cooperators. These Reference Areas represent less disturbed locations having high or low wind and wave exposure that can serve to demonstrate restoration potential for the Project Area. This project was funded under USFWS Cooperative Agreement Number 30181AJ68; full details of the project can be found in Attachment 1 of that Agreement.Item Access to SOAR: Final Report(The Regents of the University of Minnesota, 2022-01) Register, TessaThis is a co-publication of the University of Minnesota’s Center for Urban and Regional Affairs (CURA), the Northwest Regional Sustainable Development Partnership, Tamarac National Wildlife Refuge, and the Friends of Tamarac. Project funding was provided by the Mary J. Page Community-University Partnership Fund. The Community Assistantship Program (CAP) is a cross-college, cross-campus University of Minnesota initiative coordinated by the Center for Urban and Regional Affairs (CURA) and the Regional Sustainable Development Partnerships (RSDP). The content of this report is the responsibility of the author and is not necessarily endorsed by CAP, CURA, RSDP or the University of Minnesota. Regional Sustainable Development Partnerships bring together local talent and resources with University of Minnesota knowledge to drive sustainability in agriculture and food systems, tourism and resilient communities, natural resources and clean energy. The Partnerships are part of University of Minnesota Extension. Tamarac Refuge lies in the heart of one of the most diverse transition zones in North America. Here Eastern deciduous hardwoods, Northern coniferous forests and Western tall grass prairie converge, creating a rich assemblage of both plants and animals. Tamarac National Wildlife Refuge was established as a refuge and breeding ground for migratory birds and other wildlife by Executive Order 7902, dated May 31, 1938. The Friends of Tamarac sponsor educational programs and events, build observation platforms and pathways, generate thousands of grant dollars for water quality and habitat projects, host a popular nature photography contest, and so much more. They are an advocate for wildlife refuges and passionate about protecting wild places for generations.Item Alternative Technology for Sediment Remediation(University of Minnesota Duluth, 2000-11-02) Wu, ChuyingDuluth-Superior is a major port of the Great Lakes located at the extreme southwest end of Lake Superior in the cities of Duluth, Minnesota and Superior, Wisconsin. The harbor area occupies roughly 32 square miles and has 100 miles of waterfront. The harbor and lower St. Louis River have a history of water quality problems resulting primarily from municipal and industrial discharges in and upstream of the harbor. As a result, the harbor has been listed by the International Joint Commission as an Area of Concern (AOC) within the Great Lakes ecosystem. The 1995 progress report on the Remedial Action Plan (RAP) for the area identified sediment contamination as the major cause of many impaired uses in the St. Louis Estuary. Contaminants of concern include ammonia nitrogen, phosphorus, metals, oil and grease, PCBs, and PAHs. Contaminated sediments are thought to have detrimental effects on water quality, the diversity and abundance of aquatic and benthic organisms, human health, and disposal options for material dredged during harbor maintenance. The dredged material is stored in the Confined Disposal Facility (CDF) at the Erie Pier in Duluth. The CDF is nearing its capacity, and additional space is required for storage of dredged materials either by construction of a new facility or by extending the life for the one currently used. The Coleraine Minerals Research Laboratory (CMRL) of the Natural Resources Research Institute (NRRI) has, in the past, conducted several research programs to evaluate the construction of a sediment treatment plant at the Erie Pier CDF as an effective way of extending its life. CMRL is currently contracted by the US Army Corps of Engineers (ACE) to develop and engineer a plant to treat the sediment contained in the CDF. This study is being conducted in response to Section 541 of the Water Resource Development Act of 1996, initiated by Congressman Jim Oberstar, which states: "The Secretary shall develop and implement methods for decontamination and disposal of contaminated dredged material at the Port of Duluth, Minnesota". Various agencies including USEPA, Minnesota Pollution Control Agency (MNPCA), and NRRI conducted numerous research and survey projects. The sediments in the federal channels were analyzed as part of Dredged Material Management Plant (DMMP), and analyses revealed that metal concentrations in the sediments of all management units were comparable to those found in the regional soils, and that PCBs, pesticides, and PAHs were generally non-detectable. No PCBs and only low levels of PAHs were found in a survey study in Erie Pier CDF conducted by NRRI in 1997. Due to its relatively low contamination level, it is safe to study a number of variables before implementation of the technology to the other highly contaminated areas. The treatment plant should generate data on the effectiveness of using mineral processing technology for separation and decontamination of the sediments. In some cases, the separation products could be cleaned and used for other purposes such as brick manufacturing, landfill cover, beach nourishment, construction fill, and/or habitat enhancement.Item Alternative Technology for Sediment Remediation Demonstration Plant(University of Minnesota Duluth, 2000-11) Benner, Blair R; Wu, Chuying; Zanko, Lawrence MDuluth-Superior Harbor is a major port on Lake Superior located between the cities of Duluth, Minnesota, and Superior, Wisconsin. The harbor and the lower Saint Louis River that discharges into the harbor area have a history of water quality problems resulting primarily from municipal and industrial discharges in and upstream of the harbor. The port is a major debarking point for grain shipments overseas and for taconite pellets for the lower Great Lakes ports. To allow navigation, the shipping channels must be dredged annually. The dredged material has been stored in a confined disposal area developed at the Erie Pier location in Duluth. This facility is nearing its capacity and other methods for handling the dredged material must be found. The Coleraine Minerals Research Laboratory, a division of the Natural Resources Research Institute of the University of Minnesota - Duluth, has been studying the application of mineral processing techniques for treating contaminated soils. The laboratory sampled the Erie Pier site and designed a demonstration plant to treat about 50 tph of material from the site. Based on the previous work and the plant design, the U.S. Army Corps of Engineers awarded the laboratory a contract to construct and operate the demonstration plant. The plant consisted of a feeder followed by a grizzly screen to remove large rocks and miscellaneous junk. The grizzly undersize was conveyed to a double deck screen equipped with water sprays. The screen undersize flowed to a sump and pump. The slurry was then pumped to an agitated tank. Material from the tank was pumped to two cyclones to make a size separation. Cyclone overflows were collected and channeled to settling ponds to allow the solids to settle and to provide water for the plant. Cyclone underflow was stockpiled as a sand product. In addition to sending the cyclone overflow to the settling ponds, a belt filter press was tested for about two weeks to treat a portion of the overflow to produce a cake that could be easily handled and a clear filtrate that could be recycled. The objective of the program was to treat different types of materials found at the Erie Pier site to produce a coarse product (cyclone underflow) that contained less than 12 percent by weight particles finer than 200 mesh (75 microns). The underflow should be free draining so that it could be moved by loaders. The distribution of solids, water, inorganic compounds and organic compounds would be monitored. The settling characteristics of the cyclone overflow would be determined. A total of four separate samples were processed in the plant. Sample 1 was a sandy feed containing between 13 and 32 percent in the passing 200 mesh fraction. Sample 2 was a finer material that was removed from the site during construction of the settling ponds. Sample 2 contained between 30 and 52 percent in the passing 200 mesh fraction. Sample 3 was a fine sample dug from the north end of the site where the finest material should have been. Sample 3 was only run for one day due to a break down of the front-end loader used to transport the feed to the plant. The fourth sample was the drained cyclone underflow from the processing of samples 2 and 3. Maintaining a consistent feed to the plant was a continual problem. Clay material in the feed was difficult to disagglomerate and the material tended to form balls, which rolled down the screen decks. Additional water sprays and belting on the top screen deck improved the break up of the clay material but did not eliminate the problem. Another feed problem was the amount of vegetation in the feed. This material tended to bridge in the feeder and to plug the two screen decks, reducing screening capacity, at times significantly. Compounding the feed problem was the loss of the variable frequency drives on the two pumps. Loss of the drives effectively eliminated the ability to make any significant changes in the flowrate to the cyclones and, hence, the ability to affect the cyclone split. Attempts were made to control the cyclone feed by installing a by-pass line to return some of the cyclone feed back to the cyclone feed sump. These attempts were unsuccessful and on numerous occasions resulted in overloading the cyclone feed pump motor causing the motor to stop. Samples of the cyclone feed, overflow and underflow, as well as belt filter press cake and filtrate, when operating, were taken hourly. These samples were saved for future analysis. In addition to the saved hourly samples, a grab sample of each stream was taken hourly and made into a daily composite. The daily composites were filtered with a portion of the filtercake being used for size analysis and the remainder being air dried for chemical analysis. Sample 1 was processed at feed rates up to about 63 tph with no loss in performance. In all tests with Sample 1, the cyclone underflow contained less than 10 percent in the passing 200 mesh fraction. Weight recovery to the underflow ranged between 73.3 and 92.6 percent. In general, the heavy metals and organic material were concentrated in the cyclone overflow, but since the total weight recovery in the cyclone underflow was high, the majority of the heavy metals and organics in the feed remained with the cyclone underflow. The processing of Samples 2 and 3 were more difficult due to the large amount of vegetation contained in the feed. Plant feed rates were generally between 7 and 14 tph. The low feed rates were caused by the vegetation problem and by the need to feed the cyclone a low percent solids to try to make the desired size split. But even at the low percent solids in the feed, the cyclone underflow contained between 18 and 29 percent in the passing 200 mesh fraction. Weight recovery to the underflow ranged from 55 to 72 percent. Despite the high minus 200 content, the cyclone underflow was easy to dewater and formed into a steep sided conical pile. As with Sample 1, the heavy metals and organics were concentrated in overflow sample, which, due to the higher weight recovery, contained the majority of the heavy metals and organics from the feed. Since the cyclone underflows from Samples 2 and 3 still contained too many fines, the cyclone underflow pile was reprocessed through the plant. Resultant cyclone underflow contained between 10.9 and 14.7 percent in the minus 200 mesh fractions and recovered over 90 percent of the feed weight. Again the heavy metals and organics concentrated in the cyclone overflow. Performance of the belt filter press was very impressive. The resultant filtercake was very easy to handle by conveyor belts and would be very easy to haul by truck. The filtercake was almost dry to the touch. Filtrate from the belt filter press was very clean, with turbidity measurements less than 5 ntu. To produce these results required about 1.5 pounds of polymer flocculant for every 3900 gallons of cyclone overflow treated. Analysis of the filtrate indicated no residual polymer in the water.Item Analytical Chemistry and Quality Assurance Procedures for Natural Water Samples 1994-1995(University of Minnesota Duluth, 1991) Axler, Richard P; Owen, Christopher JOne of the fundamental responsibilities of water management is the establishment of continuing programs to insure the reliability and validity of data. Effective research in water pollution and management depends on a valid laboratory data base, which in turn may contribute to sound evaluations of both the progress of the research itself and the viability of available water pollution and management alternatives.Item Assessing the condition of Great Rivers using benthic and planktonic algal indicators(University of Minnesota Duluth, 2013) Reavie, Euan DThe U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program embarked on a comprehensive survey of Great Rivers in order to provide tools the states need to better manage and protect these important national resources. This survey collected indicators intended to measure the health status of the Missouri, Mississippi, and Ohio Rivers. Measured parameters included indicators of water quality, sediments, algae, plants, insects, and fish. The Natural Resources Research Institute developed indicator tools from the algae, collected from hundreds of sites throughout the Great Rivers system. Indicators are now available to track ecological quality using periphytic and phytoplanktonic algal assemblages. These indicator approaches will support future monitoring and paleoecological programs, and be used to identify and verify reference locations in rivers. Algae are well-known to respond to stressors in rivers such as nutrient and salinity loading, siltation, and other factors affecting water clarity. We took a comprehensive approach to develop indicators (metrics and indices) for large river ecosystems using proven methods suitable for large rivers nationwide. A multi-tiered approach integrating landscape, biological communities, and chemical characteristics was applied to characterize sites.Item An Assessment of Phytoplankton Nutrient Deficiency in Northern Minnesota Acid-Sensitive Lakes(University of Minnesota Duluth, 1991) Axler, Richard P; Tikkanen, Craig A; Rose, CharlesThe Northern Lakes and Forests ecoregion of Minnesota contains thousands of lakes, characterized by their sensitivity to acid rain, and their typically low productivity. Four acid- sensitive lakes were studied for 1988-1991 to determine if phytoplankton were deficient in nitrogen, phosphorus, or both N and P, and if nutrient input via atmospheric deposition could increase primary production. The relative accuracy of predictions based on growth response bioassays, physiological assays, and nutrient deficiency indices was also evaluated. Our results show that: (1) N enrichment generally caused a greater biomass response than P, although N+P almost always yielded the greatest effect and co-limitation was likely in two of the lakes; (2) predictions based on DIN:TP ratios generally agreed with the growth bioassays, TN:TP and DIN:SRP were not useful and could be misleading; and (3) atmospheric deposition could satisfy most of the daily algal N demand and increase the fertility of these lakes. These results suggest that although water quality protection based solely upon phosphorus may not protect against this non-point source of nutrients, without these control strategies, P-inputs would be expected to have a disproportionally greater impact on phytoplankton growth.Item Coastal Wetland Monitoring Survey Report: Clough Island(University of Minnesota Duluth, 2014-06) Dumke, Josh; Brady, Valerie; Danz, Nicholas P; Bracey, Annie; Niemi, Gerald JBetter than average water quality at Clough Island wetlands (for chloride and conductivity), as compared to most other SLR estuary wetlands, demonstrates the island's distance from human development. However, these wetlands still are located in the St. Louis River estuary, and thus have poorer quality by many measures than nearby Lake Superior wetlands. In particular, Clough Island wetlands had poorly-developed wet meadow zones compared to Lake Superior wetlands. Most of the Clough Island wetland areas were dominated by an emergent vegetation zone. Submergent vegetation was very patchy, and research by US EPA (Angradi, pers. comm.) found that SAV abundance across the whole estuary varies yearly depending on turbidity levels. In addition, Island wetlands have higher exposure to wind and wave action than do wetlands in secluded bays, which also affects the development of extensive aquatic vegetation beds. Clough wetlands had both high quality and low quality vegetation species, with purple loosestrife and invasive cattail particularly prevalent at 1089. Therefore, floristic quality values were very similar to other estuary sites, but lower than nearby Lake Superior wetlands that had fen components. Clough Island wetland fyke net fish catches were skewed toward warmer water fish (e.g., sunfish) than nearby Lake Superior sites, and water temperatures were substantially higher in the SLR estuary than in Lake Superior wetlands. Clough Island wetland site 1089 also had the most invasive tubenose gobies comprising a fish catch. In contrast, site 1089 had the greatest fish taxa richness. Clough Island wetlands did not provide as much habitat for YOY fish as did highly vegetated, secluded bays. Site 1102 had the greatest number of habitats and included a floating bog mat. Thus, macroinvertebrate richness was highest at site 1102, and more sensitive macroinvertebrates were present at this site. Site 1201 had the fewest habitats, and it had the lowest taxa richness for fish and macroinvertebrates (although sampling effort was also lowest at this site due to the lack of habitats). An invasive, non-native snail (Bithynio, the faucet snail) was found in all wetlands, but made up 7% of the macroinvertebrates collected from site 1201. This was different from nearby Lake Superior wetlands, in which no invasive macroinvertebrates were found. Bird use at Clough Island was different in some ways from other estuary wetlands. Wind and wave exposure and lack of protection may explain why migrating waterfowl and waterbirds were less commonly observed at Clough Island wetlands relative to other estuary wetlands. However, the island's isolation, lack of human usage, and potential for lower numbers of predators may benefit breeding birds, and forest-dwelling songbirds that were detected in large numbers during the breeding season. This idea is reinforced by the detection of secretive marsh birds and the foraging by Common Tern.Item Completion Report for Minnesota Technology, Inc. (June 30, 1999): Development of Salmon and Trout Aquaculture in Mine Pit Lakes (1989-1991); Commercial Aquaculture Implications for Water Quality (1991-1993); Constructed Wetlands for Treating Aquaculture Wastes (1993-1996)(University of Minnesota Duluth, 1999) Axler, Richard PThe assessment of environmental impacts associated with intensive salmonid aquaculture, development of tools for predicting impacts, and the development of techniques for mitigating the effects of these potential negative impacts on water resources were the focus of three MTI grants in the period 1989-1996. They are: (1) Development of Salmon & Trout Aquaculture in Mine Pit Lakes, (1989-1991); (2) Commercial Aquaculture Implications for Water Quality, (1991-1993); and (3) Constructed Wetlands for Treating Aquaculture Wastes, (1993-1996) All of these grants were "matched" with grant funds obtained from the Iron Range Resources & Rehabilitation Board, the Minnesota Sea Grant Program (National Oceanic and Atmospheric Administration) and the Minnesota Department of Agriculture. The development of constructed wetlands(#3) subsequently led to the development of an ongoing research, development and demonstration program focused on broader on-site wastewater disposal systems for rural, residential and business needs.Item Completion Report Mille Lacs Lake Paleolimnology Project(University of Minnesota Duluth, 2003) Kingston, JohnMille Lacs Lake is a high-priority lake in terms of its size and premier walleye fishery, and it has a relatively small watershed compared to the size of the lake surface. Expected future increases in development of the lakeshore have prompted a desire to know about water quality baselines for this important lake. This paleolimnological study examines a sediment core collected in late winter of 2002 using radioisotope dating, loss-on-ignition analysis of organic and inorganic sediment components, and diatom analysis as a proxy for nutrient loading. Land use changes in the watershed have caused accelerating soil erosion from 1960 until the present day. Diatom counts show a decline of benthos-dominated assemblages starting by the 1950s, with greater dominance of planktonic species for the last 60 years. This indicates nutrient loading increases and water transparency decreases. The core-top, representing conditions in 2001, shows the highest relative abundance of planktonic diatom species, indicating that nutrient loading is still increasing. Preliminary diatom- based reconstructions of past lakewater total phosphorus concentrations show that nutrient loading in Mille Lacs has increased approximately 30% during the past half century and remains at an historical high level.Item Conservation Design Toolkit for LakeSuperiorStreams.org Stormwater Pollution Prevention Pilot Project(University of Minnesota Duluth, 2006) Axler, Richard P; Schomberg, Jesse; Will, Norman; Reed, Jane; Lonsdale, David; Granley, Mindy; Hagley, CynthiaDuluth, Minnesota has 43 named streams, 12 trout streams, and borders both pristine Lake Superior and the Duluth-Superior-Harbor Area of Concern. Duluth's storm water infrastructure includes 93 miles of streams and wetlands, and urbanization and rural development impact these waters by increasing runoff and velocity, temperature, turbidity and sediment, road salt, organic matter and nutrients. In 2002, an EPA (Environmental Monitoring for Public Access & Community Tracking) grant established a Partnership called DuluthStreams between the City of Duluth, University of MinnesotaDuluth professionals at the Natural Resources Research Institute and Sea Grant Program, and the Minnesota Pollution Control Agency and Western Lake Superior Sanitary District. Their goal was to enhance public understanding of streams and their connections to watershed land use by using real-time data and interpretive materials to illustrate the nature and consequences of degraded stormwater and its real costs to society. This has included issues associated with too much runoff such as flooding, with a key issue in the region being sanitary sewer overflows from infiltration and inflow (I&I). These events have imposed risks to public health and environmental risks to the coastal zone of Lake Superior and the Duluth-Superior Harbor, and required costly programs to reduce stormwater flows from key neighborhoods and construct storage tanks for temporary storage of stormwater enhanced sanitary sewer flows. The consequences of excess water and peak flows have also included excess sediment and turbidity, and potentially excess nutrients and pathogens. High salt concentrations for significant periods in late winter and early spring runoff from winter road and parking lot de-icing can present additional stress to trout and their prey. Increasing impervious surface and direct and indirect removal of riparian vegetation increases peak temperatures, especially during base flow periods creating additional periods of stress to cold water species with the additional potential stress of lowered dissolved oxygen. In 2003, sixteen governments and groups in the North Shore Region joined to form the Regional Stormwater Protection Team (RSPT). The Team's mission is to protect and enhance the region's shared water resources through stormwater pollution prevention by providing coordinated educational programs and technical assistance. One of the vehicles that the RSPT has harnessed for its stormwater education campaign is the DuluthStreams website as part of a regional effort to provide water pollution information to the public. The project has now expanded to now include 22 communities, agencies and organizations. In 2005 the website was re-named lakesuperiorstreams.org to reflect the broader geographic region that it represents in terms of climate, soils, quality of life, natural resources, the Lake Superior watershed, and culture. The website now averages more than 300,000 "hits"/month and >75,000 "page requests"/mo with a national target audience that includes: the general public; students and teachers; contractors, consultants and developers; decision makers; and agencies (local, state, and federal). Additional information is best found by examining http://lakesuperiorstreams.org.Item Continued Monitoring of Stormwater Effluents from Filter Media in Two Bioslope Sites(Minnesota Department of Transportation, 2021-06) Cai, Meijun; Patelke, Marsha; Saftner, DavidOver the last thirty years, the Minnesota Department of Transportation (MnDOT) has implemented biofilters along roadways as a stormwater control measure. The state and national regulations require that the biofilters must be able to infiltrate and treat the first inch of rainfall onsite. However, the performance of the biofilters after installation has rarely been studied. An early phase of this project monitored two newly constructed biofilter sites for two years and for three months, respectively. This study extended the monitoring of soil moisture changes and infiltration water quality for another two years (2019-2020). Over the four-year monitoring period, both salvage peat and compost materials showed the capacity to retain the first inch of runoff, and this retention capacity did not change over the study period. The drainage water quality showed significantly temporal trends, particularly phosphorus concentrations, which were declining significantly for both compost and salvage peat. The application of tailing with compost can reduce the phosphorus release. The leachate from salvage peat has similar metal concentrations but much lower phosphorus concentrations (below 100 ppb) than the compost. The lowest chemical concentrations were achieved when the soil mixture contained 10% compost and 10% salvage peat, implying the best stormwater control practice is to limit the organic ratio to around 20%. Findings from this work determined the validity of using peat and compost for future biofilters and can aid in future design.Item Cook County Soil and Water Conservation District Biological Sampling for the Poplar River Quality Assurance Project Plan(University of Minnesota Duluth, 2007) Breneman, Dan; Brady, Valerie; Johnson, Lucinda BBenthic macroinvertebrate and habitat sampling evaluations will be conducted at locations chosen to represent the most common instream and riparian conditions. A best effort was made to minimize bias from either direct or indirect landscape alterations when selecting sampling locations. Sampling sites outlined below (see Bl. Study Design) are proposed based on several parameters (e.g., biological, geomorphological, etc.), but logistical considerations including best available access will influence site selection. Sampling protocols will follow standard operating procedures outlined by the NRRI-UMD Microscopy Laboratory standard operating procedures for field collection, laboratory sample processing, and data analysis (NRRI/TR-1999/37). All procedures outlined in the NRRI document are subject to change to respond to MPCA guidance and field conditions.Item Design, construction, and assessment of a self-Sustaining drainage ditch.(2011-08) Kramer, GeoffrieAgricultural drainage is a double-edged sword: helping farmers achieve everincreasing crop yields to meet consumers’ demands, while providing a short-circuit through the soil profile for excess water and nutrients. Drainage ditches are an important pathway as water moves downstream in headwater landscapes. As low order streams, ditches have the potential to remove and assimilate nutrients. In order to operate at their maximum nutrient removal potential, ditches should be healthy, self-sustaining ecosystems that function similarly to natural streams. The two-stage agricultural drainage ditch is an innovative solution for creating drainage ditches that behave more like natural streams. A low-flow channel provides sediment transport during low-flow periods, while benches within the ditch allow for overbank flow and energy dissipation during high-flow periods. The larger crosssectional area increases surface contact between water and the ditch at certain flow depths, which likely enhances nutrient removal. In this study, a two-stage agricultural drainage ditch was designed and then constructed in southern Minnesota, USA in the autumn of 2009. Extensive monitoring of the ditch has been conducted following construction; efforts have focused on establishing an understanding of the geomorphic, water source, and water quality aspects of the ditch. Analysis of field measurements from August 2010 show that between 10 and 15 percent of nitrate N entering the ditch was removed within the ditch reach. A slight increase in average channel thalweg elevation has been measured, while increased pool-riffle sequencing has also been observed. Channel cross-sectional surveys have showed slight changes in low-flow channel dimensions. Economic analyses have been performed to measure the feasibility of two-stage ditch construction. There are situations where predicted cost reductions in periodic ditch maintenance provide enough savings to offset two-stage channel construction costs. In other cases, subsidies may be required to economically justify a two-stage system. An analysis was performed to estimate the cost of additional nitrogen (N) removal ($/kg N removed) in two-stage ditches, using increased N removal as a basis for subsidies. Results show situations where N removal costs is less than $3 to $4 kg-1 of N removed, which is competitive with other Best Management Practices.Item Duluth Area Lakes Water Quality Assessment: Caribou, Grand, and Pike Lakes - 1999; Pike Lake Fall Overturn Studies - 1996-1998(University of Minnesota Duluth, 2001) Anderson, Jesse; Heiskary, Steven; Axler, Richard P; Henneck, JeraldMinnesota is divided into seven regions, referred to as ecoregions, as defined by soils, land surface form, natural vegetation and current land use. Since land use affects water quality, it has proven helpful to divide the state into regions where land use and water resources are similar. Data gathered from representative, minimally-impacted (reference) lakes within each ecoregion serve as a basis for comparing the water quality and characteristics of other lakes. Caribou, Grand, and Pike Lakes are located on the northern edge of the Duluth Metropolitan Area (Figure 1) in the Northern Lakes and Forests Ecoregion (Figure 2). Caribou Lake has an area of 569 acres (230 hectares), and a maximum depth of 21 feet (6.4 meters). The majority of the lake is less than 10 feet deep, and is dominated by emergent and submergent aquatic vegetation. Grand Lake has an area of 1742 acres (705 ha). Baby Grand Lake flows into Little Grand, which flows into Grand Lake. Similar to Caribou, much of Grand Lake (~ 95%) is less than 10 feet (3 m) deep, and vegetation dominates the shoreline and near-shore areas. Pike Lake has an area of 508 acres (206 ha), and is much deeper. The maximum depth is 60 feet (~18 m), and most of the lake is between 20-50 feet deep (6-15 m). These lakes all have relatively developed shorelines and are likely to experience increased development pressure in the next decade. They have also experienced some degree of water quality problems in the past. Efforts are underway to improve wastewater treatment on two of these lakes. Construction of a sanitary sewer was recently (1999) begun around Pike Lake, and a constructed wetland wastewater treatment system servicing a cluster of nine (9) lakeshore homes was installed at Grand Lake in late 1995. The present study was conducted because local units of government desired additional water quality information on these Duluth area lakes for planning purposes. The Pike Lake Association also desired some follow-up work for comparison to a previous MPCA study (Bauman 1994), and to better define current lake water quality prior to the installation of a sanitary sewer in the basin.Item DuluthStreams heads north: Making North Shore stream data make sense to citizens and local officials(University of Minnesota Duluth, 2007-09-25) Axler, Richard P; Will, Norman; Host, George E; Henneck, Jerald; Lonsdale, David; Sjerven, Gerald; Reed, Jane; Ruzycki, Elaine; Hagley, Cynthia; Schomberg, Jesse; Carlson, Todd; Lonsdale, MarnieThe Duluth Streams website initially focused primarily within City of Duluth boundaries, but some of the streams that intersect Duluth originate in the surrounding communities of Hermantown and Proctor. In addition, Duluth and Superior share the St. Louis River watershed. The current project enabled us to fully expand the DuluthStreams website into a regional entity. It was built on a previous, but limited, Lake Superior Coastal Program Enhancement Fund effort to Minnesota Sea Grant at the University of Minnesota and partners that created web links to Proctor, Hermantown and Superior on the DuluthStreams website. This made these communities ideal as the first candidates for a regional expansion. As the project continued to evolve it became clear from discussions within the RSPT and with state agencies that there was a need to expand the focus area of the website to include the “greater Western Lake Superior” region and more specifically the Minnesota North Shore and Wisconsin South Shore in order to better manage Superior Basin water resources by supporting the mission of the RSPT regarding developing regional technical cooperation and collaboration, common educational materials, and presentation of case studies of successful stormwater designs. Minnesota streams draining into the Lake Superior coastal zone and St. Louis River Estuary are typically sensitive, low productivity, high-quality trout streams. Some (Miller, Amity, Lester, Talmadge, French, Poplar, Brule) are currently listed on the MN Clean Water Act (303d) List of Impaired Waters - most commonly for turbidity and Fish-Hg (MPCA 2006). Steep topography and thin, erodible soils make these streams particularly sensitive to development. Effective management and remediation of these streams requires an understanding of their physical, chemical, and biological characteristics, which can only be obtained by monitoring, particularly during storm and snowmelt runoff events, when the most dramatic impacts occur. These data are critical for developing and assessing BMPs, particularly in the face of increased development in the high growth watersheds along the North Shore of Lake Superior (e.g. Anderson et al. 2003; MPCA 2000; IJC 1999). MPCA initiated long-term monitoring of 6 critical streams along the North Shore in 2002. However, MPCA has lacked the resources to install automated water quality sensors, which are needed to capture critical pollutant loading events during high flows - important for developing cost-effective remediation and mitigation strategies.Item DuluthStreams.org: Community Partnerships for Understanding Urban Stormwater and Water Quality Issues at the Head of the Great Lakes(University of Minnesota Duluth, 2004-12) Axler, Richard P; Lonsdale, Marion; Reed, Jane; Hagley, Cynthia; Schomberg, Jesse; Henneck, Jerald; Host, George E; Will, Norman; Ruzycki, Elaine; Sjerven, Gerald; Richards, Carl; Munson, BruceThis final report summarizes the accomplishments of the Duluth Streams Partnership from its inception through an EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) Program grant in January 2002 through September 2004. Duluth, Minnesota lies at the westernmost end of Lake Superior, the source and headwaters of the entire Laurentian Great Lakes ecosystem. Although perhaps better known for its extremely cold winters, Duluth residents and visitors know it as a city of forested hills, wetlands and trout streams with 42 named creeks and streams moving through the City in 30 subwatersheds. Duluth's park system is one of the most extensive in the nation, and the City owns and maintains 11,000 acres, including 125 municipal parks. Streams form the fabric of the aesthetic appeal and character of Duluth (Duluth Vision 2000), but are also the core of the City’s stormwater runoff system, with 250 miles of storm sewer, 93 miles of creek, 4,716 manholes, 2 lift stations, 13 sediment boxes, and over 138 miles of roadway ditches. Urbanization and rural development have placed increased pressure on the region’s coastal communities and on Duluth’s urban streams, in particular, on the 12 (with 2 more pending) that are designated as Trout Streams and 14 that are classified as Protected Waters. In addition, since the early 1990s, over 50 new lodging establishments were constructed along Lake Superior’s North Shore. One county located along the North Shore of Lake Superior (Cook) experienced a 24% population increase during that time. Stream communities of fish and amphibians and the invertebrates that sustain them are being adversely impacted by increased temperature, excessive turbidity and suspended solids, road salts, organic matter, and nutrients. Some of these streams have been placed on the Minnesota List of Impaired Waters, and several have been targeted for Total Maximum Daily Load (TMDL) development. Further, all of these streams discharge either directly into ultra-oligotrophic Lake Superior or indirectly via the St. Louis River Estuary- Duluth Superior Harbor. This is particularly important because Lake Superior has been designated as a zero-discharge demonstration project by the International Joint Commission for eliminating inputs of persistent toxic chemicals to the Great Lakes system. Second, the lake’s nearshore zone, the source of much of its biological productivity, is extremely nutrient deficient and sensitive to increased inputs of nutrients, suspended solids, turbidity, and organic matter. Lastly, the Harbor itself is one of the 43 Great Lakes Areas of Concern (AOCs) because of serious impairments to its beneficial uses. There are also significant social and economic impacts associated with this region - the Minnesota DNR reports that angling in North Shore streams and Lake Superior produces $63 million in direct sales and income and over 1,200 jobs. For North Shore streams alone, the numbers are over $33 million direct sales and income, and over 435 jobs. Stormwater issues have become increasingly important to resource and regulatory agencies and to the general public. In 1998 the City of Duluth established a stormwater utility to address the quality and quantity of surface water moving through the City and in 2003 was issued a Stormwater Permit under Phase II of the federal Clean Water Act’s National Pollution Discharge Elimination System (NPDES). Beginning in January 2002, under funding through EPA EMPACT in combination with in-kind effort from various agencies, the Natural Resources Research Institute (NRRI) and Minnesota Sea Grant formed a partnership with the City of Duluth, the Minnesota Pollution Control Agency (MPCA), the Great Lakes Aquarium, and the Western Lake Superior Sanitary District (WLSSD) to create Duluth Streams. Additional partners have since joined together to form a Regional Stormwater Protection Team (RSPT). The Partnership's chief goal is to enhance the general public's understanding of aquatic ecosystems and their connections to watershed land use to provide both economic and environmental sustainability. The project’s majors objectives were to: 1) link real-time remote sensing of water quality in four urban streams and GIS technology to current and historical water quality and biological databases (all 42 Duluth streams) using advanced data visualization tools in World Wide Web and information kiosk formats; 2) incorporate visually engaging interpretive text, animations and videos into the Duluth Streams website to illustrate the nature and consequences of degraded stormwater and the real costs to society; and 3) engage the public in the stormwater issue via programmatic activities such as establishing high school directed neighborhood stewardship and/or monitoring of 3 streams, developing curricula for high school and college students for inclusion in our Water on the Web curriculum, hosting a Duluth Streams Congress as a community forum for presenting all project results, and adapting the Nonpoint Education for Municipal Officials (NEMO) program to the greater Duluth Metropolitan Area. This final report summarizes the accomplishments of the Duluth Streams Partnership from its inception in January 2002 through September 2004. The website at htttp://duluthstreams.org is the focus of the project and offers water quality, biological, and GIS data in the context of a variety of school- and community-oriented educational material.Item An Ecological Design for the 21st Avenue West Remediation-to-Restoration Project(University of Minnesota Duluth, 2013) Host, George E; Meysembourg, Paul; Reschke, Carol; Brady, Valerie; Niemi, Gerald J; Bracey, Annie; Johnson, Lucinda B; James, Matthew; Austin, Jay; Buttermore, ElissaThe lower 21 miles of the St. Louis River, the largest U.S. tributary to Lake Superior, form the 4856 ha St. Louis River estuary. Despite the effects of more than 100 years of industrialized and urban development as a major Great Lakes port, the estuary remains the most significant source of biological productivity for western Lake Superior, and provides important wetland, sand beach, forested, and aquatic habitat types for a wide variety of fish and wildlife communities. The lower St. Louis River and surrounding watershed were designated an 'Area of Concern' (AOC) under the Great Lakes Water Quality Agreement in 1989, listing nine beneficial use impairments (BUIs), such as loss of fish and wildlife habitat, degraded fish and wildlife populations, degradation of benthos, and fish deformities. To address these BUIs, the St. Louis River Alliance (SLRA) completed the Lower St. Louis River Habitat Plan, which identified ecosystems and sites with significant habitat limitations due to contaminated sediments and other unknown factors. The 21st Avenue West Habitat Complex is one of several priority sites for a 'Remediation-to-Restoration' (R-to-R) project. The intent of the R-to-R process is to implement remediation activities to address limiting factors such as sediment contamination while also implementing restoration projects that best complement the desired ecological vision. This report documents the initial steps in the R-to-R process underway at 21st Avenue West, the development of an “Ecological Design” for the project area, and a preliminary evaluation of factors potentially limiting the realization of habitat and other land use goals. To establish the basis for this ecological design, researchers at the University of Minnesota Duluth’s Natural Resources Research Institute (NRRI), in cooperation with U. S. Fish and Wildlife Service, the U.S. Environmental Protection Agency, the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources and other partners, sampled the project area from late summer 2011 through fall 2012. The intent of field sampling was to establish baseline information on vegetation, benthos, birds, sediment contamination and types, and ecotoxicology. The subsequent ecological design effort will explore options to increase the overall footprint of quality aquatic vegetation beds and spawning habitat available, soften and extend shorelines, and remove or reduce the effect of industrially-influenced substrates. These options will be presented to adjacent landowners, as well as local and regional stakeholders, to contribute to the discussion on R-to-R options. The desired outcome of the project is to significantly increase the biological productivity of this complex of river flats and sheltered bays, in fulfillment of the SLRA Habitat Plan (SLRA 2002), while minimizing the risk of exposure of contaminants to fish and wildlife resources. This project was funded under USFWS Cooperative Agreement Number F11AC00517, and is part of the USFWS Environmental Contaminants Program’s goal to address contaminant-related needs of the St. Louis River Area of Concern as part of the Great Lakes Restoration Initiative.