Browsing by Subject "Taking Stock - Natural Resources"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Cook County Land Use Guide Plan Update: Sense of Place & Desired Future Condition(2015) Cook CountyThis three-page pdf summarizes the desirable attributes of Cook County, with numerous direct and indirect references to water resources and the coastal areas, for example: “The Physical Setting: A Wild Land Cook County’s blend of diverse natural resources and features, including its climate, attracts people to visit and live in the county and is the foundation for most of its economic activity. The county’s distinctiveness is founded upon its relatively low levels of development and population that are enhanced by a sense of undeveloped wildness and remoteness expressed, in part, by the presence of Lake Superior, the Boundary Waters Canoe Area Wilderness, and other large tracts of publicly accessible land. This is furthered by its unique mix of seacoast and forest and lakes and mountains, its large expanses of relatively intact ecosystems, and its relatively unpolluted setting. Although the depth of individuals’ understanding of and reaction to the physical setting may vary, there is a broadly shared acceptance of the inherent value of these features and the need to sustain them into the future.”Item Duluth Values Open Space(2002) Kreag, Glenn MThis report documents how residents perceive the importance of open spaces in Duluth, Minnesota. While not specifically about water resources, this study refers occasionally to the value of wetlands, lakes and rivers. Key findings of the survey are extracted and reproduced below. Executive summary: “Duluth is known for its extensive open spaces, particularly their natural ambiance and relation to Lake Superior. The type, nature, and quantity of open spaces contribute significantly to the character and quality of a community, a concept captured locally in the community-wide "2001 & Beyond" visioning process (completed in 1997) where participants indicated that maintaining Duluth as an "urban wilderness" was a priority. The data in this report are the result of an 8-page, 20-question survey that reached 955 Duluth residents in 2001. The University of Minnesota Sea Grant Program designed the survey with assistance and review from the EAC, the NRI Committee, and the Minnesota Center for Survey Research. Two types of open space were defined in this study: Natural Open Space - places where the native vegetation grows without significant alteration and, Developed Open Space - places where land and vegetation are altered or controlled. Of the questions relating to water resources, 93% of those taking the survey reported that they frequently use and enjoy views of Lake Superior and the St. Louis River. 50% reported using and enjoying wetland areas. Regarding developed open spaces, 68% reported using a public access for boating and fishing. 70% of respondents felt that water supply, sanitary and storm sewers were important government functions related to open spaces.”Item Economic Impact and Social Benefits Study of Coldwater Angling in Minnesota(2002) Gartner, William C; Love, Lisa L; Erkkila, Daniel; Fulton, David CThis study was conducted of anglers utilizing Minnesota’s northeast region cold-water fisheries in 2000-2001, and was based upon a staged mail-back questionnaire sent to anglers who had purchased a trout/salmon stamp from the Minnesota DNR. The purpose of this study was to investigate the economic and social benefits of coldwater angling participation in the state of Minnesota. Overall 10,297 questionnaires were mailed, and 3,029 returned for a response rate of 33%. Two null hypotheses guided this study: 1. There are no expenditure differences between the different types of coldwater angling investigated. 2. There are no experience differences between the different types of coldwater anglers. The survey looked at access points; bait used; species preferences; preference for fishing location; angler age, gender and education; trip distance; purpose of anglers’ trips; and numerous other behaviors and preferences. It also assessed the economic impact of anglers on local economies. The report notes that “fishing equipment was the largest expenditure in preparation for the trip ($12.57/person/day). Total expenditures at home were $33.90 per person per day. The largest expenses en route and onsite were lodging ($15.39/person/day), prepared food ($12.55/person/day), and gas ($12.70/person/day) totaling $71.31 per person daily. In sum, the typical coldwater angler spent $105.21/day. Overall, anglers were satisfied with their trip, and the quality, size and number of fish caught. The study concludes with the following findings: “There were many differences noted between the five different types of fishing investigated in this study. The differences were substantial, significant, and revealing. The evidence presented strongly argues for rejecting both of the null hypotheses used to guide this research. Therefore, we can state with a high degree of certainty that expenditure differences do exist for anglers between the different types of coldwater angling and that different experiences are sought by anglers engaging in different types of fishing. The research that allowed us to reject both null hypotheses also provides us with some interesting insights into other differences between anglers in the five different fishing types."Item Evaluating Minnesota's Historic Dams: A Framework for Management(Archaeo-Physics, LLC, 2013) Arnott, Sigrid; Birk, Douglas A; Maki, DavidThis study assessed 31 historic mill dam sites in Minnesota. Of these, one was located in the Sea Grant coastal area. The study discusses broader impacts of dams on tribal, cultural and environmental resources generally, which are relevant to the SG study area.Item Fond du Lac Resource Management: 2008 Integrated Resource Management Plan(2008) Fond du Lac Band of Lake Superior ChippewaThis very comprehensive document was reviewed and is felt to have significant content and analysis relevant to Minnesota’s coastal area and water resources. It also contains biophysical and watershed-related content directly relevant to Native communities in Minnesota’s coastal communities. Key content is reproduced below: Executive summary: “This Integrated Resource Management Plan contains information about the Band’s past and current management activities and identifies resources that need additional management. The Integrated Resource Management Plan contains alternatives to resource management, as required by the National Environmental Policy Act, which are based on the management objectives. Management activities range from no action to full implementation, and the alternatives presented reflect that range. The objectives that can be completed under each alternative are displayed in a table located at the end of discussion on alternatives. Public input was solicited on the draft document, which included a variety of management alternatives. Comments obtained from the community and tribal government were incorporated into the final document, and the hearing process provided a basis for the formulation and selection of the preferred alternative. The preferred alternative is officially approved by Resolution # 1183/08. Each resource is described in a narrative that was developed in the following format: o Description of the affected environment o Background for that resource o Issues, concerns, and opportunities for that resource o Goals and objectives for that program, with different management alternatives The final chapter is a summary of the alternatives. The preferred alternative is identified for each resource.” Approximately 15 pages of this report are dedicated specifically to water-based resources, including chapters on wild rice, wetlands and water, and fisheries. Some sections are reproduced below. Wild Rice There are five primary wild rice lakes on the Fond du Lac Reservation. The total area on which wild rice is currently present on these lakes is 843 acres. The wild rice areas on the individual lakes are: Perch Lake, 411 acres; Mud Lake, 151 acres; Rice Portage Lake, 131 acres; Jaskari Lake, 79 acres; and Deadfish Lake, 71 acres. These lakes are all within the Stoney Brook Watershed, which is tributary to the St. Louis River. Wild rice is also present in Side Lake, Cedar Lake, Wild Rice Lake, Simian Lake, and Hardwood Lake. Side Lake and Hardwood Lake are within the Stoney Brook Watershed. Cedar Lake and Simian Lake are within the Simian Creek Watershed. Wild Rice Lake is the headwaters of the Moosehorn River, a tributary of the Kettle River. The density of mature wild rice varies from season to season, as the ecology of wild rice growth is related to cycles of plant decomposition, the number of growing days, and available nutrients. In addition, wild rice is easily lost as a result of natural events, such as high winds, flooding, and hail. The majority of the wild rice resource on the Fond du Lac Reservation is in the Stoney Brook Watershed. Beginning in 1916, the Stoney Brook Watershed was adversely affected by the creation of a network of judicial ditches. These judicial ditches drastically altered the hydrology of the watershed, resulting in the loss of over 500 acres of wild rice habitat. The lower water levels that resulted from the judicial ditching allowed competing vegetation to encroach on areas that at one time supported wild rice. Besides the Stoney Brook Watershed, wild rice resources in other areas of the Fond du Lac Reservation are in decline as well. The reason for this decline is primarily due to higher water levels, caused by road building and beaver activity. The Fond du Lac Natural Resources Program is responsible for the wild rice management and restoration activities on the Fond du Lac Reservation. The primary method of wild rice lake management consists of utilizing water control structures (dams) to stabilize water levels, ditch maintenance, and beaver dam management. The restoration of the major wild rice lakes on Fond du Lac is dependent on restoring the lakes to their historical elevation and a more natural annual hydrological cycle. The implementation of the Rice Portage Wild Rice and Wetland Restoration Project resulted in the construction of four water control structures. These four structures are located at the outlet of Perch Lake, the outlet of Rice Portage Lake, an impoundment that is upstream of Deadfish Lake (commonly known as “Upper Deadfish”), and at the outlet of Deadfish Lake. These structures are used to restore the lake elevations and improve hydrologic function. Issues: The ineffectiveness of current mechanical methods for the restoration project on Rice Portage Lake. Mud Lake continues to produce a thin crop of wild rice, despite its potential for higher yields. Concerns: Invasive species–both invasive and exotic plant species–are of great concern due to their persistence once introduced. While there are no know exotic species in our wild rice lakes, the risk is high given the uses of these lakes by waterfowl hunters and wild rice harvesters. Climate change–weather pattern changes, annual precipitation, and temperature changes–all may impact the viability of our wild rice lakes. Opportunities The Stoney Brook Watershed Study will provide a model that will allow for more effective water level management, and identify opportunities for restoration of the original river system, and abandonment of unnecessary ditch segments. The current trend of land purchasing, land use planning, and increased resource management capabilities affords long term protection for portions of the wild rice lake watershed that were unavailable in the past. Increased Resource Management Division staff and capabilities may allow for opportunities to partner with other agencies and organizations to restore, protect, and enhance wild rice growth throughout the Ceded Territories. Goals & Objectives At a minimum, maintain the current program and management. Increase vegetation treatment acreage per annum. Surface water resources The Fond du Lac Reservation includes abundant freshwater resources, with over 3,000 acres of lakes (828 acres of wild rice waters), nearly 44,000 acres of wetlands, and 96 miles of rivers and streams. The St. Louis River, the largest U.S. tributary to Lake Superior, borders the Reservation to the north and east, and approximately 95% of the waters of the Reservation lie within its watershed. All of the waters within the Reservation are believed to be relatively pristine. There are no known or permitted industrial or municipal discharges to the waters, except to the St. Louis River. Historical hydrological modifications to many of the Reservation’s wild rice lakes occurred with the development of the judicial ditch drainage system early in the twentieth century. Currently, a restoration project is underway to gradually restore Rice Portage Lake, one of the most productive rice lakes, to its historical water levels, and to minimize water level fluctuations on Deadfish Lake, thereby enhancing its stands of rice. Shoreline development and the accompanying potential for increased nutrient inputs (septic discharge and lawn chemicals) and erosion are factors that could affect the water quality of several Reservation lakes. By 1998, the Fond du Lac Environmental Program developed and the Reservation Business Committee adopted a set of Water Quality Standards for the surface water resources of the Reservation, setting contaminant criteria and designating uses for 24 lakes and eight streams within the boundaries, and identifying Outstanding Reservation Resource Waters. More recently, the Band has been granted “Treatment as a State” authority by the U.S. Environmental Protection Agency, under the federal Clean Water Act, enabling it to enact and enforce such standards. As a critical tool for implementing these standards, the Environmental Program designed a comprehensive Water Quality Monitoring Plan. Initially a rigorous three-year monitoring project measuring the physical, chemical and biological quality of 24 lakes and eight streams located within the exterior boundaries of the Reservation, it has since been modified to reflect an ongoing status and trends program. This comprehensive database on Fond du Lac surface waters will also permit the Office of Water Protection to develop numerical biocriteria to replace the narrative biocriteria currently in the tribal Water Quality Standards. The data is also utilized to assess and report on the condition of these water bodies and their attainment of designated and aquatic life uses. Protecting human health requires monitoring for indicators that measure the safety of eating fish or other aquatic wildlife, or of swimming and boating. Conserving ecosystems requires indicators of diverse, healthy aquatic plant and animal communities, and indicators are also needed to assure that water quality and sediment conditions can maintain those biological communities. The Water Quality Monitoring Plan was designed to assess indicators for both human health and aquatic life. Atmospheric deposition of mercury is of particular concern in this boreal forest and wetland ecoregion, as biochemical processes enhance mercury availability to the aquatic food chain, bioaccumulating to levels that are hazardous to top predators and humans. Consequently, fish caught in Reservation waters can be dangerously high in tissue mercury content. Criteria for the Water Quality Standards were calculated under an assumed fish consumption rate that is much higher than the state of Minnesota or the Great Lakes region assumes for the general population, as some Band members rely upon fish at a subsistence level in their diet. The Environmental Program has completed several projects that assessed contaminant levels (mercury, PCBs and lead) and characterized sediments of twelve Reservation lakes and the St. Louis River. In 2001, Fond du Lac partnered with the Minnesota Department of Health to collect and analyze fish tissue from lakes and the St. Louis River (preferred fishing waters), using the data to develop specific fish consumption advisories. Groundwater In 2004, Fond du Lac completed its first Nonpoint Source Assessment Report and applied for Treatment as a State for non-point source authority. The Office of Water Protection received its first base program funding in 2005 and is using that support to implement several projects under the following categories: hydro modification, timber harvesting, roads and urban development. The Resource Management Division is also engaged in a major hydrologic study of the Stoney Brook watershed in partnership with Natural Resources Conservation Service and the U.S. Geological Survey. Ultimately, a Stoney Brook Watershed Management Plan will be developed to account for multiple resource management objectives, including wild rice production and stream and wetland restoration. The Office of Water Protection also has identified aquatic invasive species as a major concern for protecting the Reservation’s water resources. The nonpoint source program provides for broad education and outreach to the Reservation community and affected stakeholders, in order to minimize nonpoint source impacts to Fond du Lac water resources. The primary objectives of the Environmental Program are to ensure the protection of valuable ground water resources through the continued closures of abandoned wells, the delineation of protection zones for wells contributing to community water systems, and the development of a wellhead protection plan for the Reservation. The Fond du Lac Reservation boundary encompasses 101,153 acres, of which 43,264 (43%) are wetlands. These wetlands consist of forested (67% – black spruce, tamarack, or black ash dominant; includes bogs), scrub shrub (29% – alder or willow dominant), emergent (3% – sedge, reed canary grass, or cattail dominant; includes wild rice lakes), and open water (< 1% – coontail dominant). Many wetlands on the Reservation have been degraded due to human activities, particularly by ditching, road construction, agricultural and silvicultural runoff, and commercial and residential development. The Environmental Program has a Wetlands Conservation and Protection program that has been active since October of 1998. A Wetlands Protection and Conservation Plan was adopted by the Reservation Business Committee in October 2000. The plan was expanded, updated and adopted by the Reservation Business Committee in February 2006 to become the Fond du Lac Joint Comprehensive Wetlands Protection and Management Plan. The adoption of this plan led to the development and adoption by the Reservation Business Committee of the Fond du Lac Wetlands Protection and Management Ordinance in June 2006. Erosion and sedimentation resulting from storm water can cause significant impact to surface waters. On the Reservation, construction activities have the potential to be a major contributor to these impacts. Since March 2003, the Office of Water Protection has been providing erosion and sedimentation control best management practices oversight of construction projects on the Reservation. This is the result of the Environmental Protection Agency’s National Pollutant Discharge Elimination System Phase II Construction Storm Water regulations as part of Section 402 of the Clean Water Act. In addition to this voluntary oversight, the Office of Water Protection has also entered into a Storm Water Direct Implementation Tribal Cooperative Agreement to conduct inspections of construction sites impacting one acre or more. Two tribal inspectors have been trained and credentialed by Environmental Protection Agency to conduct inspections on the Reservation. More than 13 projects are scheduled for inspection during the construction seasons of 2007 and 2008. In addition, the Office of Water Protection has been developing the required Storm Water Pollution Prevention Plans for nearly all projects conducted by the Reservation, as well as occasional projects conducted by individual Band members.” A long list of concerns and threats to water resources is included in the report. These related to taconite and sulfide mining operations, mercury deposition, nonpoint source pollution and other causes. “Fisheries The majority of the lakes on the Fond du Lac Reservation are small, shallow bodies of water, more suitable for growing wild rice than for the management of any significant fisheries. Many of these lakes do have fish, however, with populations consisting primarily of northern pike), largemouth bass, panfish, yellow perch), and bullhead. Due to relatively shallow water, high abundance of aquatic macrophytes, and substrates composed predominantly of decaying organic matter, many of these Reservation lakes are incapable of supporting any naturally reproducing populations of walleye (Sander vitreus). These lakes are, however, conducive to the production of northern pike, panfish, largemouth bass, and bullhead but are also subject to frequent winterkill. Most of the lakes on the Reservation do have some type of public access, though most are strictly carry-in accesses. The fishery of the St. Louis River is by far the most important one for residents of the Reservation. At least four game fish species can be found in appreciable numbers; northern pike, walleye, smallmouth bass, and channel catfish. The channel catfish fishery remains the highest priority of Fond du Lac Band members who regularly use the St. Louis River’s fishery resources. Much can be done to improve the trout populations on the Reservation. Stream improvements and the removal of beaver and their lodges and dams may improve habitat for resident trout populations. Stocking may need to be a part of future management activity, but shouldn’t be random and haphazard as past stocking activities appear to have been. In addition, regular assessments need to be performed following any stocking efforts. The fisheries in the 1854 and 1837 Ceded Territories are numerous and diverse, from small trout streams in the Superior National Forest, to lakes such as Mille Lacs that are capable of sustaining large walleye populations, to the salmon and trout of Lake Superior. Walleye and northern pike appear to be the most important species to Band members, and are relatively abundant throughout both of the Ceded Territories. A high priority for Band members is a concentrated subsistence harvest at Mille Lacs Lake, where a regular spring harvest season occurs.”Item Grand Marais Recreation Park Master Plan(2009) Grand Marais Park BoardThis is a bullet-point summary of current and proposed future uses to the park. Key points are that water-based activities be prioritized. Facilities that do not need waterfront access should be relocated (animal shelter, public works storage garage etc.). Shoreland vegetation and historic sites should be preserved. Future harbor development should be anticipated.Item Identifying Erosional Hotspots in Streams along the North Shore of Lake Superior, Minnesota using High-Resolution Elevation and Soils Data(2013) Wick, Molly JaneThis is a University of Minnesota Water Resources Science master’s thesis describing original research to determine fluvial erosion in three coastal streams (Amity, Talmadge and French) of Minnesota’s Lake Superior shoreline. All three streams have elevated levels of turbidity, with potential for damage to fisheries. The goal of this project was to develop a GIS-based model using new, openly-available, high-resolution LiDAR datasets to predict erosional hotspots at a reach scale. The abstract summarizing the study’s key findings is extracted and reproduced below. Abstract: “Many streams on the North Shore of Lake Superior, Minnesota, USA, are impaired for turbidity driven by excess fine sediment loading. The goal of this project was to develop a GIS-based model using new, openly-available, high-resolution remote datasets to predict erosional hotspots at a reach scale, based on three study watersheds: Amity Creek, the Talmadge River, and the French River. The ability to identify erosional hotspots, or locations that are highly susceptible to erosion, using remote data would be helpful for watershed managers in implementing practices to reduce turbidity in these streams. “Erosion in streams is a balance between driving forces, largely controlled by topography; and resisting forces, controlled by the materials that make up a channel’s bed and banks. New high-resolution topography and soils datasets for the North Shore provide the opportunity to extract these driving and resisting forces from remote datasets and possibly predict erosion potential and identify erosional hotspots. We used 3-meter LiDAR-derived DEMs to calculate a stream power-based erosion index, to identify stream reaches with high radius of curvature, and to identify stream reaches proximal to high bluffs. We used the Soil Survey Geographic (SSURGO) Database to investigate changes in erodibility along the channel. Because bedrock exposure significantly limits erodibility, we investigated bedrock exposure using bedrock outcrop maps made available by the Minnesota Geological Survey (MGS, Hobbs, 2002; Hobbs, 2009), and by using a feature extraction tool to remotely map bedrock exposure using high-resolution air photos and LiDAR data. “Predictions based on remote data were compared with two datasets. Bank Erosion Hazard Index surveys, which are surveys designed to evaluate erosion susceptibility of banks, were collected along the three streams. In addition, a 500-year flood event during our field season gave us the opportunity to collect erosion data after a major event and validate our erosion hotspot predictions. Regressions between predictors and field datasets indicate that the most significant variables are bedrock exposure, the stream power-based erosion index, and bluff proximity. A logistic model developed using the three successful predictors for Amity Creek watershed was largely unsuccessful. A threshold-based model including the three successful predictors (stream power-based erosion index, bluff proximity, and bedrock exposure) was 70% accurate for predicting erosion hotspots along Amity Creek. The limited predictive power of the models stemmed in part from differences in locations of erosion hotspots in a single large-scale flood event and long-term erosion hotspots. The inability to predict site-specific characteristics like large woody debris or vegetation patterns makes predicting erosion hotspots in a given event very difficult. A field dataset including long-term erosion data may improve the model significantly. This model also requires high resolution bedrock exposure data which may limit its application to other North Shore streams.”Item Mercury in Streams at Grand Portage National Monument: Evidence of Ecosystem Sensitivity and Ecological Risk(2012) Wiener, James GThis is a 4-page pdf, which apparently has not been published although the paper reviewers are named. The origin of the paper is unclear, and it should be regarded as “gray” literature. Key points are extracted and reproduced below. “In 2008, the University of Wisconsin-La Crosse began quantifying mercury in aquatic food webs in six national park units in the western Great Lakes region, including Grand Portage National Monument (GRPO). Principal objectives are (1) to identify parks and water bodies where concentrations of methylmercury are high enough to adversely affect fish and wildlife, and (2) to assess spatiotemporal patterns in methylmercury contamination of aquatic food webs. Methylmercury is a highly toxic compound that readily bioaccumulates in exposed organisms and can biomagnify to harmful concentrations in organisms in upper trophic levels of aquatic food webs. Study sites at GRPO include Snow Creek (beaver pond in upper reaches and lower reaches), Poplar Creek (south branch), and Grand Portage Creek (lower reach). Analytical results reveal elevated concentrations of both total mercury and methylmercury in these stream systems... Concentrations of total mercury and methylmercury in streamwater from GRPO are substantially higher than concentrations typically found in lakes and streams in the western Great Lakes region. “Bioaccumulation and ecological risk. In 2010, prey fish were sampled from three streams in the park and analyzed whole for total mercury, which accumulates in fish as methylmercury. Mean concentrations were highest, exceeding 100 ng/g wet weight (nanograms per gram, equivalent to parts per billion) in blacknose dace (Rhinichthys atratulus) and longnose dace (Rhinichthys cataractae) from Poplar Creek. These mean concentrations in dace substantially exceed the estimated dietary threshold (40 ng/g wet weight in prey fish) associated with reproductive effects of mercury on piscivorous fish that feed on prey fish (Depew et al. in press). Mean concentrations of mercury in most of the other prey fishes analyzed also exceeded the 40 ng/g threshold for reproductive effects on piscivorous fish; these included creek chub (43 ng/g) and central mudminnow (56 ng/g) from Poplar Creek, fathead minnow (58 ng/g) and central mudminnow (55 ng/g) from Snow Creek, and longnose dace from Grand Portage Creek (67 ng/g). The maximal concentrations in individual fish were 242 ng/g in blacknose dace and 211 ng/g in longnose dace. These maximal values exceed dietary thresholds associated with adverse effects of methylmercury on the health and reproduction of fish-eating birds. “The high concentrations of methylmercury in larval dragonflies may indicate significant risks for insectivorous songbirds that forage and nest near streams at GRPO. Studies in eastern North America have documented unexpectedly high concentrations of mercury (present as methylmercury) in certain terrestrial invertivores, including passerine songbirds. Most songbirds with elevated concentrations of mercury are linked trophically to mercury-methylating environments—such as wetlands, streams, or lakes—and feed on spiders or emergent insects with aquatic larval stages. Methylmercury in the diet of reproducing female birds is transferred rapidly to the developing egg, and the embryo is the most sensitive life stage. Methylmercury exposure and its potential effects on reproductive success of invertivorous songbirds at GRPO has not been assessed but merits critical evaluation.”Item The Minnesota Regional Copper-Nickel Study 1976-1979, Volume 1: Executive Summary(1979) Minnesota Environmental Quality BoardThis is a comprehensive, clearly-written document summarizing potential biophysical and socioeconomic impacts of copper-nickel mining in Minnesota. Special attention is paid to impacts on water resources. Relevant sections are reproduced in their entirely below, not only for historical interest but because of predictive power. Summary: "The Minnesota Environmental Quality Board's Regional Copper-Nickel Study is a comprehensive technical examination of the environmental, social, and economic impacts associated with the potential development of copper-nickel sulfide mineral resources of the Duluth Complex in northeastern Minnesota. This executive summary of the 5 volume, 36 chapter report presents some of the major findings of the Study, but in order to get a complete picture of the complex issues associated with exploiting this valuable mineral resource, the entire document should be examined. In addition to this report over 180 technical reports, extensive environmental monitoring data files, special sample collections, and other information resources were compiled by the Study" (n.b. these documents were not reviewed as part of this current desk review). Consistent with directions from the Minnesota Legislature, the Regional Copper-Nickel Study presents technical findings but does not make policy recommendations based on these findings." "To allow for a discussion of the potential environmental and socio-economic effects of copper-nickel development, an area of approximately 2100 square miles was designated as the Regional Copper-Nickel Study Area (or simply, the Study Area). This area contains Virginia in the southwest corner and Ely in the northeast corner. The major copper-nickel deposits of interest occur along the Duluth Gabbro Contact, in a band three miles wide and fifty miles long (the Resource Area); however, additional deposits may extend beyond this band. The Water Quality Research Area, which includes the complete watersheds of 14 streams of interest, is shown in Figure 2. Waters north of the Laurentian Divide are part of the Rainey River Watershed, which includes a portion of the Boundary Waters Canoe Area, and whose waters eventually drain into Hudson Bay and the North Atlantic. Waters south of the Divide are a part of the St. Louis River Watershed which drains into Lake Superior and eventually into the Atlantic Ocean via the St. Lawrence River.” "Historically, the exploitation of base metal sulfide resources (such as copper-nickel resources) throughout the world has been accompanied by the significant degradation of the quality of water resources and the destruction of aquatic and terrestrial biota m the vicinity of such developments. Acid mine drainage, toxic heavy metals contamination, erosion, sedimentation, increased salinity, and other water pollution problems associated with mining were common. The nonferrous minerals smelting industry (principally copper, lead, and zinc) has also been a major source of manmade air pollutants. Until new technology has been developed to minimize many of these impacts, adverse impacts of past practices continue to cause close scrutiny of new mining proposals.” Water Quantity (Volume 3-Chapter 4). "Surface water is abundant in the Water Research Study Area due to high surface runoff. Average annual runoff in the region is about 10 inches. The Water Research Study Area includes 360 lakes larger than 10 acres, in addition to 14 small rivers and streams. Nearly 75 percent of the Water Research Study Area, and an even larger proportion of the surface water is north of the Laurentian Divide. North of the Divide, lakes are more numerous and larger, and the volume of stream flow is greater because a larger area is being drained. Because some of these waters are inside the BWCA, not all of the water north of the Divide is directly available for use. Annual average flow for 12 streams studied by the U.S. Geological Survey for the Study ranged from 23 to 1,027 cubic feet per second (cfs). High flow generally occurs after heavy precipitation and following the spring snowmelt. Average low flow for seven days is 2 to 186 cfs compared to an average high flow of 87 to 4,763 cfs. Ground water yield is generally low, limited by the low permeability of the Area's bedrock and the often shallow overlaying glacial deposits. Yields generally average less than 5 gallons/minute. Three relatively small areas have high volume aquifers yielding up to 1,000 gallons/minute: the Embarrass Sand Plain, the Dunka River Sand Plain, and the local fractured and leached bedrock areas in the Biwabik Iron Formation.” "Current industrial use of surface water is primarily for electric power generation. Mine-pit dewatering is the greatest groundwater use. At current levels, water use does not cause significant impacts on the region's water resources, although withdrawal from some streams must be reduced during low flow. Surface water, including some of the large on-channel lakes (e.g. Birch Lake), could supply large water users, al though storage may be required for certain streams. The Embarrass River Valley aquifer is the only identified groundwater source in surficial materials that could supply large water users.” Water Quality (Volume 3-Chapter 4). "Because of the large number of streams and lakes in the Study Area, the value of high quality water which supports a significant recreational and wilderness resource of the state and the nation, and the recognized historic relationship between base-metal mining and water pollution, a major responsibility of the Regional Copper-Nickel Study was the collection of baseline surface and ground water quality data (note: data tables and figures and not reproduced). "The quality of the region's water resources is generally very good except for several streams with watersheds affected by extensive taconite mining activities, and for groundwater either from glacial till or wells near the Duluth Gabbro Complex sulfide mineralization. Streams draining largely undisturbed watersheds can be described as containing soft water, having low alkalinity, low total dissolved solids, low nutrients, high color, very low trace metals concentrations, and low fecal coliform counts.” "Streams draining disturbed watersheds (Partridge, Embarrass, Upper St. Louis rivers south of the Laurentian Divide, and the lower Dunka River and Unnamed Creek north of the Divide) would be considered to contain moderately hard to hard waters, with elevated dissolved solids, nutrients, and trace metals concentrations relative to undisturbed watersheds. Color and fecal coliform concentrations are not significantly different in the two watershed classifications. Most water quality parameters tend to be much less variable in undisturbed streams as compared to disturbed streams. The quality of the lakes studied is variable though similar to the quality of undisturbed streams. However, lake values may be less meaningful for determining baseline concentrations than values in streams because of the limited number of samples.” "In general, concentrations of most chemical constituents are higher in the groundwater than in streams and lakes of the area. Groundwater from wells proximate to the Duluth Gabbro contact were found to have higher levels of trace metals and sulfate than wells located at a distance from the contact. Phosphorus and nitrogen are the major nutrients in aquatic systems. Concentrations of both nutrients in study streams are at the low end of the range of values for U.S. streams. Variations in nutrient levels exhibited no clear trends between headwater and downstream stations or between small and large watersheds. Highest concentrations of nitrogen were found downstream from mining operations where blasting compounds containing nitrogen are used. In lakes, nutrient parameters are closely associated with the activities of aquatic organisms. Higher levels of available nutrients encourage greater biological productivity. The ratio of nitrogen (N) to phosphorus (p) can be used to evaluate which of these nutrients limits algal productivity. Lakes with a N:P ratio greater than 14 are considered to be limited by phosphorus. Within the Study Area, median N:P ratios ranged from 14 to 60, and half the lakes studied had ratios greater than 25. Overall concentrations of both nutrients were at the low end. Median values for both nutrients were higher south of the Laurentian Divide than north of it. The most productive lakes were all headwater lakes, usually shallow, and surrounded by extensive bog and marsh areas.” "A major concern related to copper-nickel development is levels of heavy metals in surface waters. At background stream stations, copper, nickel, and zinc levels are generally very low, with median concentrations of copper and zinc in the range of 1-2 ug/liter and nickel around 1 ug/liter. Other trace metals of biological importance (As, Cd, Co, Hg, and Pb) have median concentrations significantly below 1 ug/liter. There is little variability in the levels of arsenic, cobalt, cadmium, mercury, titanium, selenium, and silver across almost all surface waters monitored. As expected, iron, manganese, copper, nickel, zinc, lead, fluoride, and chromium concentrations in streams are significantly higher in disturbed watersheds than in undisturbed areas. The dynamics of metals in lakes are somewhat different from those in streams because the large surface area of bottom sediments with their varying oxidation reduction potentials complicates the picture. Lakes can act as sinks for metals (as is the case with iron at Colby Lake) so that the chemistry of out flowing waters is different from that of inflowing waters. Large lakes may exhibit variability in the concentration of metals within the lake itself (as is the case with nickel in Birch Lake). Similar to streams, iron,' aluminum, and manganese were the most elevated metals in the Study Area lakes. Copper, nickel, and zinc have median levels between 1 and 2 ug/l, whereas arsenic, cobalt, and lead have median levels of 0.6,0.4, and 0.4 ug/l, respectively. Cadmium levels were an order of magnitude (10 times) lower than those for arsenic, cobalt, and lead. The greatest variabilities in concentrations were exhibited by manganese, zinc, cadmium, and aluminum, with arsenic the least variable metal.” "Water quality standards and criteria for many parameters have been adopted or are proposed for adoption by the Minnesota Pollution Control Agency or the U.S. Environmental Protection Agency (EPA). Recommended levels for cadmium, color, copper, iron, lead, manganese, mercury, nickel, nitrogen (as N02 + N03), pH, specific conductance, sulfate, and zinc were exceeded in one or more of the streams monitored. In most cases, these elevated levels occurred in Unnamed Creek, which is affected by mining (see discussion of Unnamed Creek below). The region's streams and lakes have naturally high color levels.” "All streams which were monitored exceeded the EPA water quality criteria for mercury (0.05 ug/liter). The median concentration of mercury for all streams monitored was 0.08 ug/liter with a range of 0.01-0.6 ug/liter. Standards for mercury are based on U.S. Food and Drug Administration guidelines for edible fish. High mercury levels have been found in fish from some of the area's lakes and streams. Because acid precipitation is a potential problem, the quality of precipitation in the Study Area was monitored at several sites. Seventy-seven percent of the samples (41) had a pH less than 5.7, which means that most of the precipitation measured can be considered acidic. Fifty percent of the samples had a pH of 3.6 to 4.4. The geometric mean pH of samples collected in the area was 4.6. These values are comparable to, or even less than values measured in areas of the world where ecological damage has already occurred. Measurements by the Regional Study indicate that the present annual sulfate deposition rate (wet plus dry) across the Study Area is from 10 to 20 kg/ha/yr (9 to 18 lbs/ acre/yr). Atmospheric dispersion modeling indicates that regional sources of S02 are not major contributors to depressed acidity of precipitation and suIfate deposition in the region. This in turn indicates that out-state and out-of-state sources, possibly as far away as St. Louis, Chicago, and Ohio Valley areas, are likely the major cause of acid rain and sulfate deposition in northeastern Minnesota.” "If the patterns of increasingly acidic precipitation continue, it is likely that many of the poorly buffered small streams will have noticeable decreases in aquatic populations (such as fish) during and following spring melt.” "Stream systems are very sensitive because the flush of water from spring snowmelt can represent a majority of the water that the stream may carry through the whole year. Recovery from these episodes may be expected to be fairly rapid (i.e. within months) unless or until the sources of recolonizing organisms are themselves affected (i.e. well buffered lakes or large unaffected streams). Recovery would be very slow once the source areas are affected. The effects of acid precipitation on vegetation range from damage to leaves to increased susceptibility to disease and death (see Volume 4-Chapter 2). A direct causal relationship between acid precipitat ion and reduced forest productivity measured by growth remains to be demonstrated. However, research suggests that acid precipitation is probably a cause of reduced forest growth. Because acidic precipitation and sulfate deposition are primarily related to air pollution sources outside the region and are projected to increase significantly over the next 10-20 years, acidification may represent a serious threat to the ecosystems of northeastern Minnesota, even if copper-nickel development does not occur. Long-term changes in the aquatic communities are probably already underway due to the general decrease in the pH of precipitation and thereby of surface waters in the Study Area. Because the decrease in pH will likely be slow, measurement of biological effects would require intensive long-term monitoring. During this period of decreasing pH, the overall productivity and diversity of the aquatic communities can be expected to decrease.” "One crucial parameter that was monitored is the water's buffering capacity-- its ability to regulate pH changes due to acid inputs from atmospheric deposition or leaching. The resistance to pH change is a function of the type of acid input (i.e. strong or weak acids) and the type of chemical components in the receiving water which can assimilate or bind the hydrogen ions. Calcite saturation indices (csr) were calculated for all study lakes and 30 lakes in the BWCA to measure this buffering capacity. Lakes with a csr less than 3.0 are well buffered; lakes with an index between 3.0 and 5.0 are poorly buffered with the possibility that acidification may already be occurring; and an index over 5.0 indicates lakes with little or no buffering ability and a strong possibility that severe acidification has already occurred.” "The poorly buffered lakes in the region are with few exceptions headwater lakes. This may be explained by the fact that buffering is a function not only of atmospheric processes, but also of watershed geology. The chemistry of headwater lakes often reflects that of precipitation, with watershed contributions to lake chemistry assuming secondary importance. As one proceeds from headwater to downstream lakes 1.U the Study Area, the ability of the lakes to assimilate hydrogen ions generally increases. Headwater areas of the region (which include half the BWCA lakes studied) are generally not well buffered and have limited capacities to assimilate existing acid loadings. Some of the lakes sampled during the study which may be the earliest to be affected by acidic precipitation include: Clearwater, August, Turtle, One, Greenwood, Perch, and Long lakes. These lakes have Calcite Saturation Indices above 3.0. Headwater streams are generally poorly buffered, in part because their water quality is also dependent upon the quality of precipitation.” "Two unique water quality conditions have been identified in the Study Area which are directly related to the presence of copper-nickel sulfide mineralization. In one of these cases, human disturbance of this mineralization has accelerated the chemical/physical weathering (leaching) of this material. Filson Creek, located in the northeastern part of the Study Area adjacent to the BWCA, flows naturally over exposed mineralized gabbro. Within the Filson Creek watershed, total concentrations of copper and nickel 10 the year 1977 generally increased from headwater locations to Filson's point of discharge into the South Kawishiwi River. Total nickel concentrations measured in Filson's headwaters were, except for one sample, less than 1 ug/liter, while the mean nickel concentration near the mouth of the watershed was 3 to 5 ug/liter. The smaller copper and nickel concentrations at Filson Creek headwater locations reflect the smaller percentage of sulfide bearing material in the till and the greater distance from the mineralized contact zone. The elevated metal values measured in Filson Creek may not be completely due to natural weathering of sulfide minerals. Prior to 1977, considerable mineral exploration activities occurred, including the taking of a bulk surface mineral sample. Subsequently, a small volume surface discharge was discovered at the foot of the bulk sample site with elevated metals levels (10,000 to 13,000 ug/l Ni, 360 to 1,000 ug/l Cu, and 190 to 5300 ug/l 2n). This discharge enters a small tributary of Filson Creek and raises the nickel and copper concentrations by about 9 ug/l and 5 ug/l, respectively. This change in trace metal concentrations is not sufficient to result in measureable biological changes in the Creek.” "In the other unique case, a small watershed (Unnamed Creek) which drains into Birch Lake at Bob Bay contains several wastepiles containing mineralized gabbro from a nearby taconite mining operation (Erie Mining Company's Dunka Pit). The large surface area of the waste rock facilitates the chemical weathering process. Surface seeps containing elevated concentrations of sulfates and trace metals (especially nickel) are present. The seeps flow into Unnamed Creek where the influence of this disturbance on water quality is obvious. Median nickel levels in Unnamed Creek were 85 ug/l, compared to 1 ug/l in undisturbed streams (Table 4). Extensive field studies conducted in this watershed have demonstrated that extensive disturbance of the mineralized gabbro without corrective mitigation can result in significant water quality degradation. The magnitude of the potential impacts in this specific case is largely mitigated by natural chemical processes involving adsorption, chemical complexation, and precipitation due largely to the presence of a bog in the watershed. The metal concentrations measured at Bob Bay would be significantly higher if not for the effect of the bog. However, the bog is showing some signs of stress and its beneficial effect on water quality may not continue for long.” Environmental Impact Assessment: Water Use "Water is required in significant quantities as a transport medium for the ore during concentration and for tailing disposal. Additional water is required in the smelting and refining phase for cooling and other purposes. Precipitation partially offsets the major water losses coming from evaporation losses coming from evaporation from tailing basins and water trapped between particles in tailing basins. However, fresh makeup water (estimated to average 0.76-1 b ill ion gallons per year) will be required for all three integrated copper-nickel development models (Volume 2-Chapter 5). Water requirements will vary significantly on a seasonal and annual basis.” "A good water management system is designed to manage and store runoff and seepage on the site (around waste piles, tailing basins, and elsewhere). The specific site and the design of the system will determine whether periodic discharges of waste water will be necessary during periods of above average precipitation. Because of the fairly continuous demand for water and the varying supply of water in lakes and streams in the area, it is estimated that significant water storage (10,000 to 15,000 acre-feet) will be necessary for use during dry periods. This water storage could be supplied by the tailing basin and/or reservoirs. Storage requirements for makeup water supply and containment of polluted water could increase land requirements by 2,000 to 3,000 acres.” "Increased demand for water could become a source of conflict if waters tributary to the BWCA are appropriated for copper-nickel development and if the waters are also diverted for taconite development, such as the Upper St. Louis and Partridge river watersheds. These issues could be considered prior to issuance of a DNR permit which s required for water appropriation. However, if both taconite expansion and copper-nickel development proceed in northeastern Minnesota, a regional comprehensive water management plan and perhaps a cooperative industrial water supply system may need to be considered.” "Quality of tailing water during the operating phase 1S primarily controlled by the concentrating process water. This water is largely recycled and should not be a significant heavy metal pollution source. Seepage can also be collected and recycled if necessary. Elevated levels could occur during the post-operating phase or if more sulfides are deposited in the basin than projected. Local variation in ore mineralogy could result in pockets of tailing having much higher sulfide concentrations which could cause localized leaching problems. Due to limited research on tailing water quality, the unknowns involving the quality of runoff and seepage from a tailing basin are greater than those associated with waste rock piles and create another source of significant risk involving future copper-nickel water management decisions.” "Mine dewatering can also contribute heavy metals, the amount depending upon the quantity of water from precipitation and groundwater sources that must be removed and the metal sulfide content of the mine. No precise conclusions can be made about expected levels of heavy metal release from this source. Smelter and refinery waste water 1S not as significant an issue as waste piles. Production of these waste waters 1S dependent on facility design and operation, and there appears to be no significant post-operational concerns.” "Treatment methods are available to reduce heavy metal concentrations in these waste waters to levels where biological impacts are not expected. Effluent water quality models for impact assessment purposes were developed (Volume 3-Chapter 4) based on the best data available from field and laboratory results, but this information is not sufficient to allow precise statements on the quality of water produced from copper-nickel water pollution sources or on the effectiveness of reclamation practices for specific effluent parameters (e.g. suIfates, trace metaIs, processing reagents). For example, information strongly suggests that runoff from waste piles will contain elevated heavy metals and dissolved solids concentrations as compared to background surface water quality. Heavy metals could be 500 to several thousand times higher than natural water quality levels and sulfates could be ten to several hundred times higher.” "These models reflect an assumption that acid mine drainage problems will not occur because of the natural buffering capacity of the waste materials. If this assumption IS wrong and acid conditions do occur, then projections of water pollution will be significantly underestimated because, as the pH becomes acid, there are dramatic increases in the amount of heavy metals leached from the waste significantly affects whether a metal will be in an aqueous phase (and highly mobile) or in a solid phase.” "Treatment of large amounts of runoff to remove heavy metals to existing background levels may be prohibitively expensive. Additional research is necessary in order to make accurate predictions about effluent quality and the effectiveness of various controls. Cost and time constraints will likely require that the first mining activities proceed without this predictive capability.” Heavy metals have adverse effects on aquatic organisms, the extent depending upon the type of metal (or combination of metals), organism tolerance, and water chemistry (Volume 4-Chapter 1). For example, cold water fisheries are generally more susceptible to heavy metal pollution than warm water fisheries." No mention is made of impacts on wild rice stands.Item Minnesota’s County Land Management A Unique Ownership Providing Diverse Benefits(2004) Fernholz, Kathryn; Bowyer, Jim; Howe, Jeff; Bratkovich, Steve; Frank, MattThis report concerns public and private forests in northeastern Minnesota. It does not specifically deal with water resources except to note the following: “Ideally, forest management for restoration, forest health, wildlife habitat, and biodiversity benefits should be continued even when market prices are low. Delaying management because of poor market conditions may result in declines in forest health due to insect or disease issues being left untreated or other changes that can diminish water quality protections and important wildlife habitats. Delayed harvests and associated silvicultural treatments can also negatively impact recreation and other social benefits benefits.” Also, under the topic of water quality, the report advocates utilizing improved inventory data (forest cover types, species, age, native plant communities, soils, etc.) to evaluate current conditions in known impaired watersheds and develop long-term plans. Other key points are extracted and summarized below. “Minnesota is among a small number of states that have county managed forest land. This report explores the history and current contribution of Minnesota’s county-managed forest lands, including the diverse social, economic and environmental benefits they provide. "Minnesota’s “county forests” originated during the 1930s. During the era of the Great Depression, the state was challenged with the consequences of unsustainable farming practices, cut-and-run logging, bankrupt homesteads and devastating wildfires. Thousands of acres of land became tax delinquent as owners could not, or for a variety of reasons would not, pay their taxes. These lands were labeled "worthless” and became the "lands nobody wanted." In 1935, in an attempt to return the tax delinquent acres to private ownership, the Minnesota Legislature provided for forfeiture of these lands to local counties, thereby enabling their resale to others. By this time, about eight million acres of tax-forfeited land had accumulated. Delinquency and subsequent forfeiture continued at a high level into the 1960s. As the demand for land remained low and many of the acres were not re-sold, the land continued to be the responsibility of the local county governments. Over time, the counties began to recognize opportunities to care for these lands in ways that could rebuild the soils, restore forest habitats, enhance local communities and create long-term economic returns. Counties found they could manage the lands to grow trees on a sustained-yield basis and the returns from this management could improve the environment and also provide jobs, revenues to meet public needs, and other benefits. In 1979, the Minnesota Legislature enacted "Payment In Lieu of Tax (PILT) Legislation" that encouraged retention of the tax-forfeited land by the local public land managers. The law provided compensation to local taxing districts (i.e., counties) for retaining land that represented a loss of tax base. These payments remain important for sustaining the needs of local communities and ensuring continual stewardship of natural resources. Counties do not share a uniform plan or prescription for management of forests. Each county manages its woodlands independently. Local interests, including the common use of citizen advisory committees, inform management decisions and county staff and boards administer the lands. In recent years, county land departments have provided leadership in several areas linked to responsible forest management. These include third-party forest certification, forest-based carbon offset opportunities, motorized recreation management, and forest inventory needs. Most of the benefits and services of county lands are not easily quantified and many are provided at no direct cost, which makes estimating their value difficult. However, related research has explored the potential value of these types of benefits. 98% of the lands each year are providing undisturbed habitat, water quality and recreation benefits. Minnesota’s county forest lands, unwanted in the 1930s, now provide unique opportunities to address local community needs, contribute to resolution of emerging issues, and demonstrate responsible forestry. County land managers are currently challenged by a number of significant threats, including invasive species, forest health concerns, and reduced markets. At the same time, the management of county forests is subjected to political pressures, shrinking local and state budgets, and competing interests. Minnesota is one of a few states that has county-managed lands within the public land category. These county lands can be described as Minnesota’s “community-forests” due to the important social, economic and ecological services they provide as public lands under local control. The county-managed lands provide a unique type of land ownership within the context of public forest lands in the state. To ensure the delivery of the services and benefits of these lands for future generations continued investment and statewide commitment to their responsible care and management is required.”Item Northeast Minnesota Wetland Mitigation Inventory and Assessment, Phase 1: Final Inventory Report(2009) Barr Engineering"The Northeast Minnesota Wetland Mitigation Inventory and Assessment Project is a two phase project to identify potential wetland mitigation opportunities located in northeastern Minnesota and analyze those opportunities to develop goals and priorities. Both phases of the project are designed to only address the technical aspects of wetland mitigation, analysis of policy related issues are beyond the scope of this project. Phase 1 is designed to identify potential wetland mitigation sites and inventory and assess mineland wetlands and Phase 2 will assess siting recommendations based on priorities, including but not limited to: mitigation types/methods, water quality, proximity to impaired waters, technical feasibility and wetland functions. The wetland mitigation inventory has been conducted with a watershed emphasis to identify watershed and water quality improvement opportunities within the study area. Baseline data was collected to develop an initial understanding of the existing wetland resources and a regional assessment was conducted of potential opportunities for wetland restoration, enhancement, preservation and creation. The intent of this study is to use existing data to identify potential wetland mitigation opportunities and verify and assess the technical feasibility of a limited sampling of sites in the field. Based on the technical committee and stakeholder feedback, four general categories of mitigation methods were evaluated: wetland restoration, preservation, enhancement, and creation. A GIS model analysis was conducted utilizing existing data sources to identify potential wetland mitigation opportunities within the project area. Potential wetland mitigation sites were identified throughout the study area... Approximately three percent of the potential mitigation opportunities spread across 17 of the 18 counties have been evaluated in the field to determine the accuracy of the modeling methods and to sample landowner interest. Northeastern Minnesota faces unique challenges for wetland mitigation due to several factors, namely: • The presence of extensive wetland resources, • Approximately 57 percent of land is in public (federal and state) and tribal ownership, • Few established wetland mitigation banks currently exist, • A perceived lack of traditional wetland mitigation opportunities exist, and • The need for approximately 550 acres of wetland mitigation is projected annually in the foreseeable future. An ad hoc committee formulated a strategy which included five main recommendations: • Conduct a regional wetland mitigation inventory to determine the availability of wetland mitigation opportunities in the region. • Conduct a regional mitigation siting study to summarize the results of the regional inventory and help to streamline mitigation planning in the region. • Develop a northeastern Minnesota wetland bank cooperative – a third party to coordinate, promote, and develop wetland banking within the region. • Compile up-to-date knowledge or research on non-traditional mitigation methods • Update the National Wetlands Inventory for northeastern Minnesota Following discussions with northeastern Minnesota legislators, a legislative bill was introduced to fund the regional wetland mitigation inventory and the mitigation siting study. In 2007, after receiving stakeholders’ testimony the Legislature funded the inventory and the siting study recommendations through a two-year appropriation to the Board of Water and Soil Resources (BWSR) for 2008-2009."Item Outdoor Recreation in the Regional Copper-Nickel Study Area(1978) Webb, SaraThis 35-year old study primarily discusses non-Indian recreational use of public and private lands in the Cu-Ni region of Minnesota’s Iron Range. This recreation-oriented study does not specifically note Native American use of study area lands except for very indirect references to gill-netting and wild ricing. It has a strong focus on human use of water resources in the region, but does not investigate potential impacts of increased recreational use, mining, or other anthropogenic activities with potential to affect condition of these resources. The study abstract and key segments are extracted and reproduced below. Abstract: “Geographic patters of outdoor recreational use in the Copper-Nickel Study Area were investigated as part of a study of potential impacts of copper-nickel mining in Northeastern Minnesota. With the objective of characterizing patterns of recreational use of facilities, water bodies and public lands, interviews were held with thirteen land use managers and others familiar with the study area. Findings from this interview program together with past recreation research provide a data base on existing recreational use necessary for to impact analysis. Numerous public and private recreation facilities are located along Study Area lakes and streams. Outside facilities, public and some private lands are used for diverse land-based activities when afforded road, trail, or surrogate trail access; old logging roads serve this function in the most heavily-used areas, although some activities such as and winter camping rarely occur in recently logged zones. Dense settlement and lowland bogs restrict access by most land-oriented recreationists. Water-based recreation is concentrated on large, deep lakes in the Study Area's northern half. Part of the Boundary Waters Canoe Area (BWCA), a national wilderness area, lies within the Study Area's north boundary. Canoeists and fishermen use BWCA lakes heavily. Dozens of smaller lakes throughout the Study Area serve Iess diverse but sometimes more intensive recreation functions. Only a few lakes lack any recreational use; most are quite small and lack access or recreation resources. Most Study Area streams have limited recreational use because of low water levels, with the exception of two rivers, the Kawishiwi and the St. Louis River. Three general types of outdoor recreation can be distinguished: facility -based recreation), dispersed land-based recreation, and water-based recreation. To spare the time and expense of primary field surveys, a program of interviews with thirteen land managers such as conservation officers and foresters was designed, using Spradley's interview method. Key points: ‘Outdoor recreation in all forms is dependent upon access: roads, trails, and public lands. The region is covered with an extensive network of land management units at various levels. Land-based recreation use relates closely to the area's logging history and logging roads. Lake, stream, road and facility use must be carefully evaluated before siting decisions about mining and recreational use are finalized.’Item Regional Copper-Nickel Study : Plant Diseases Affecting Forest Trees in Northeastern Minnesota's Regional Copper-Nickel Study Area(1978) Zeyen, Richard J; Groth, James VThis report presents a series of tables of tree diseases in the region, as well as factual narrative descriptions. The document contains a table of common plant diseases for the region. The remainder of the report describes a variety of tree diseases and their symptoms and appearance. No conclusions or recommendations are included. The abstract and summary points are extracted and reproduced below. "This report is based upon lists of major vegetation community types, compiled for a preliminary study of the Regional Copper-Nickel Study Area. Only dominant plant species, as determined by releve techniques, have been included in the discussion of diseases. The intent of this report is to present a brief survey of the major diseases caused primarily by biotic agents. The information was obtained from general references and from personal observations of the diseases of the area over the past 11 years. The report is divided into two parts: (1) a comprehensive table of diseases recorded in the area and their causal agents (Table 1), and (2) brief descriptions of 25 diseases of exceptional economic or aesthetic importance."Item Regional, Watershed, and Site-Specific Environmental Influences on Fish Assemblage Structure and Function in Western Lake Superior Tributaries(2005) Brazner, John; Tanner, Danny K; Detenbeck, Naomi E; Batterman, Sharon L; Stark, Stacey L; Jagger, Leslie A; Snarski, Virginia MThis report assesses the impact of human activities and forest fragmentation on fish communities in the western Lake Superior basin. Human-induced activities noted in the report included temperature changes, siltation, erosion, forest cover and forest manipulation, and invasive species. Specific results are reproduced below. “The relative importance of regional, watershed, and in-stream environmental factors on fish assemblage structure and function was investigated in western Lake Superior tributaries. We selected 48 second- and third-order watersheds from two hydrogeomorphic regions to examine fish assemblage response to differences in forest fragmentation, watershed storage, and a number of other watershed, riparian, and in-stream habitat conditions. Although a variety of regional, fragmentation, and storage-related factors had significant influences on the fish assemblages, water temperature appeared to be the single most important environmental factor. We found lower water temperatures and trout–sculpin assemblages at lower fragmentation sites and higher temperatures and minnow–sucker–darter assemblages as storage increased. Factors related to riparian shading and flow separated brook trout streams from brown trout (Salmo trutta) – rainbow trout (Oncorhynchus mykiss) streams. Functionally, fish assemblages at lower fragmentation sites were dominated by cold-water fishes that had low silt tolerance and preferred moderate current speeds, while fishes with higher silt tolerances, warmer temperature preferences, and weaker sustained swimming capabilities were most common at higher storage sites. Our results suggest that site-specific environmental conditions are highly dependent on regional- and watershed-scale characters and that a combination of these factors operates in concert to influence the structure and function of stream fish assemblages. Key points: This study was completed within 160 km of Duluth, Minnesota, in the Northern Lakes and Forests Ecoregion and within two ecological units, the North Shore Highlands (north shore streams) and the Lake Superior Clay Plain (south shore streams)which provided excellent contrast in hydrogeomorphic types. Functionally, south shore fishes tended to be silt-dwelling, trophic generalists with slow current preferences and a tendency towards nest-guarding spawning behavior. North shore fishes tended to be single-bout spawners with fast current preferences. From a management perspective, our results suggest that both timber management and wetland restoration or degradation decisions will need to be considered by resource managers when fish community health is a concern. For example, increasing percentages of mature forest cover should allow for salmonid–sculpin assemblages to become more prevalent in streams with the potential for cool or cold waters. Similarly, increased wetland cover should allow for a greater predominance of healthy warmwater fish assemblages assuming that other landscape features are not too badly degraded. By understanding the species structure and functional character of an assemblage and its relationship to landscape features, managers should be able to make at least a rough assessment of watershed condition. Lacking fish data, it might be easier to simply characterize forest cover and storage as a first step in identifying which watersheds likely contain streams that are degraded. Our results suggest that although in-stream habitat rehabilitation should continue to be used an important tool to improve biological conditions in streams, restoration efforts will have greater success if the potential interactions with landscape conditions are factored into the decision-making process. In some situations, manipulation of forest cover or watershed storage may have a greater impact on fish assemblage integrity than in-stream habitat improvements.”Item Water Resources in the Vicinity of Municipalities on the Eastern Mesabi Iron Range and the Vermillion Iron Range in Northeastern Minnesota(1962) Cotter, R D; Young, H L; Petri, L R; Prior, C HThis historical document contains assessments of water supply for Aurora, Hoyt Lakes, Babbitt, Tower-Soudan and Ely from fifty years ago. While it does not describe human uses of water resources at the time, it does contain information about aquifers and ground water resources that could potentially be used for industrial, municipal or recreational purposes. "This report describes existing and potential water supplies on the eastern Mesabi and Vermilion Iron Ranges, northeastern Minnesota. Increased supplies of water are needed for expansion and diversification of the economy of the iron ranges. Specifically, supplies are needed for taconite processing, wood and peat processing, and municipal expansion. This investigation made in cooperation with the Minnesota Department of Iron Range Resources and Rehabilitation indicates that in some areas large quantities of water are available from both ground and surface sources. The most productive aquifers are the Biwabik Iron-Formation and the stratified glacial drift. East of Colby Lake, the Biwabik is not an important aquifer. On the Vermilion Iron Range, this formation is absent, and the glacial drift is commonly too thin to produce the quantities available on the Mesabi Range. Bodies of stratified drift, believed by the authors to be potential sources for large ground-water supplies, are outlined as numbered areas. Their boundaries are drawn on the basis of topography, geologic mapping, test drilling, and test pumping. The accuracy of the assessment of the ground-water supplies in each numbered area is proportional to the subsurface control. Where adequate pumpage data are available, specific capacities of wells are noted. Multiplying the specific capacity by the maximum allowable drawdown will give the short-term maximum yield of a well. Specific capacities decrease with an increase in time and pumping rate. Specific capacities of wells completed in artesian aquifers should not be compared with those of wells completed in water-table aquifers, because, in otherwise identical aquifers, the value obtained for a well in the artesian aquifer would be much lower. The geologic sections in this report are based on the indicated testhole information and open-pit mine exposures. Identification of glacial deposits from drill cuttings and correlation of deposits between test holes is tenuous. However, the sections show the sequence and general lithology that probably would be penetrated in a drill hole along the line of section. Surface-water supplies in the eastern Mesabi and Vermilion Iron Ranges are good. In the southwestern part of the area of this report, the Embarrass, St. Louis, and Partridge Rivers and Second Creek are good potential supplies. Vermilion Lake is a very large untapped potential supply in the northwest. The eastern part has a network of lakes and river systems available for utilization. Records of flow for eight gauging stations are presented. The quality of ground water and surface water is adequate for many industrial uses. Ground water commonly has a high concentration of iron and manganese and is hard. Surface water commonly has a high concentration of iron and is colored. Analyses of water from many sources are included."