Browsing by Subject "Rpg1 gene"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases(Proceedings of the National Academy of Sciences of the United States of America, 2002-07-09) Steffenson, Brian; Brueggeman, R.; Rostoks, N.; Kudrna, D.; Kilian, A.; Han, F.; Chen, J.; Druka, A.; Kleinhofs, A.Stem rust caused by Puccinia graminis f. sp. tritici was among the most devastating diseases of barley in the northern Great Plains of the U.S. and Canada before the deployment of the stem rust-resistance gene Rpg1 in 1942. Since then, Rpg1 has provided durable protection against stem rust losses in widely grown barley cultivars (cvs.). Extensive efforts to clone Rpg1 by synteny with rice provided excellent flanking markers but failed to yield the gene because it does not seem to exist in rice. Here we report the map-based cloning and characterization of Rpg1. A high-resolution genetic map constructed with 8,518 gametes and a 330-kb bacterial artificial chromosome contig physical map positioned the gene between two crossovers ≈0.21 centimorgan and 110 kb apart. The region including Rpg1 was searched for potential candidate genes by sequencing low-copy probes. Two receptor kinase-like genes were identified. The candidate gene alleles were sequenced from resistant and susceptible cvs. Only one of the candidate genes showed a pattern of apparently functional gene structure in the resistant cvs. and defective gene structure in the susceptible cvs. identifying it as the Rpg1 gene. Rpg1 encodes a receptor kinase-like protein with two tandem protein kinase domains, a novel structure for a plant disease-resistance gene. Thus, it may represent a new class of plant resistance genes.Item Genetically engineered stem rust resistance in barley using the Rpg1 gene(Proceedings of the National Academy of Sciences of the United States of America, 2003-01-07) Steffenson, Brian; Horvath, Henriette; Rostoks, Nils; Brueggeman, Robert; Wettstein, Diter von; Kleinhofs, AndrisThe stem-rust-susceptible barley cv. Golden Promise was transformed by Agrobacterium-mediated transformation of immature zygotic embryos with the Rpg1 genomic clone of cv. Morex containing a 520-bp 5′ promoter region, 4,919-bp gene region, and 547-bp 3′ nontranscribed sequence. Representatives of 42 transgenic barley lines obtained were characterized for their seedling infection response to pathotype Pgt-MCC of the stem rust fungus Puccinia graminis f. sp. tritici. Golden Promise was converted from a highly susceptible cultivar into a highly resistant one by transformation with the dominant Rpg1 gene. A single copy of the gene was sufficient to confer resistance against stem rust, and progenies from several transformants segregated in a 3:1 ratio for resistance/susceptibility as expected for Mendelian inheritance. These results unequivocally demonstrate that the DNA segment isolated by map-based cloning is the functional Rpg1 gene for stem rust, resistance. One of the remarkable aspects about the transformants is that they exhibit a higher level of resistance than the original sources of Rpg1 (cvs. Chevron and Peatland). In most cases, the Golden Promise transformants exhibited a highly resistant reaction where no visible sign of infection was evident. Hypersensitive necrotic “fleck” reactions were also observed, but less frequently. With both infection types, pathogen sporulation was prevented. Southern blot and RT-PCR analysis revealed that neither Rpg1 gene copy number nor expression levels could account for the increased resistance observed in Golden Promise transformants. Nevertheless, this research demonstrates that stem-rust-susceptible barley can be made resistant by transformation with the cloned Rpg1 gene.