Genetically engineered stem rust resistance in barley using the Rpg1 gene

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Genetically engineered stem rust resistance in barley using the Rpg1 gene

Published Date

2003-01-07

Publisher

Proceedings of the National Academy of Sciences of the United States of America

Type

Article

Abstract

The stem-rust-susceptible barley cv. Golden Promise was transformed by Agrobacterium-mediated transformation of immature zygotic embryos with the Rpg1 genomic clone of cv. Morex containing a 520-bp 5′ promoter region, 4,919-bp gene region, and 547-bp 3′ nontranscribed sequence. Representatives of 42 transgenic barley lines obtained were characterized for their seedling infection response to pathotype Pgt-MCC of the stem rust fungus Puccinia graminis f. sp. tritici. Golden Promise was converted from a highly susceptible cultivar into a highly resistant one by transformation with the dominant Rpg1 gene. A single copy of the gene was sufficient to confer resistance against stem rust, and progenies from several transformants segregated in a 3:1 ratio for resistance/susceptibility as expected for Mendelian inheritance. These results unequivocally demonstrate that the DNA segment isolated by map-based cloning is the functional Rpg1 gene for stem rust, resistance. One of the remarkable aspects about the transformants is that they exhibit a higher level of resistance than the original sources of Rpg1 (cvs. Chevron and Peatland). In most cases, the Golden Promise transformants exhibited a highly resistant reaction where no visible sign of infection was evident. Hypersensitive necrotic “fleck” reactions were also observed, but less frequently. With both infection types, pathogen sporulation was prevented. Southern blot and RT-PCR analysis revealed that neither Rpg1 gene copy number nor expression levels could account for the increased resistance observed in Golden Promise transformants. Nevertheless, this research demonstrates that stem-rust-susceptible barley can be made resistant by transformation with the cloned Rpg1 gene.

Description

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

10.1073/pnas.0136911100

Previously Published Citation

Horvath, Henriette, Rostoks, Nils, Brueggeman, Robert, Steffenson, Brian, Von Wettstein, Diter, & Kleinhofs, Andris. (2003). Genetically engineered stem rust resistance in barley using the Rpg1 gene.(Abstract). Proceedings of the National Academy of Sciences of the United States, 100(1), 364-369.

Other identifiers

Suggested citation

Steffenson, Brian; Horvath, Henriette; Rostoks, Nils; Brueggeman, Robert; Wettstein, Diter von; Kleinhofs, Andris. (2003). Genetically engineered stem rust resistance in barley using the Rpg1 gene. Retrieved from the University Digital Conservancy, 10.1073/pnas.0136911100.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.