Browsing by Subject "Recycled asphalt pavement"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Hydraulic and Mechanical Properties of Recycled Materials(Minnesota Department of Transportation, 2009-10) Gupta, Satish; Kang, Dong Hee; Ranaivoson, AndryConstruction and maintenance of roads requires large volume of aggregates for use as base and subbase materials. Because of the cost of virgin aggregates, federal and state agencies are encouraging the recycling of waste materials including materials in old pavements. This study assessed the suitability of four recycled materials relative to virgin aggregates for use as base and subbase materials. The four recycled materials were the reclaimed asphalt pavement (RAP), fly ash (FA), reclaimed concrete material (RCM), and foundry sand (FS). Assessment of these materials was done in terms of their hydraulic, mechanical, and leaching properties when mixed in with various proportions of virgin aggregates. Except for slightly higher fine content in some RAP-aggregate mixtures, particle size distribution of all mixtures was within the Mn/DOT specification band for Class 5 materials. Water retention (pore size distribution), hydraulic conductivity, resilient modulus, and shear strength measurements were generally similar to that of 100% aggregates. Exception was the mixtures of FS. Heavy metal concentrations in the leachate were also generally less than the EPA drinking water standards. We concluded that FA, RAP, and RCM mixtures will be good substitutes of virgin aggregates as base and subbase materials.Item Resilient Modulus And Strength Of Base Course With Recycled Bituminous Material(Minnesota Department of Transportation, Research Services Section, 2007-01) Kim, Woosung; Labuz, JosephThe objective of the research was to determine the strength and deformation characteristics of base material produced from recycled asphalt pavement (RAP) and aggregate. Various samples with different ratios of RAP and aggregate base were mixed (% RAP/aggregate): 0/100, 25/75, 50/50, 75/25. Laboratory compaction testing and field monitoring indicated that gyratory compacted specimens were closer to the densities measured in the field. Resilient modulus (MR) tests were generally conducted following the National Cooperative Highway Research Program 1-28A test protocol. MR increased with increase of confining pressure, but MR showed little change with deviator stress. The specimens with 65% optimum moisture contents were stiffer than the specimens with 100% optimum moisture contents at all confining pressures. Cyclic triaxial tests were conducted at two deviator stresses, 35% and 50% of the estimated peak stress, to evaluate recoverable and permanent deformation behavior from initial loading to 5000 cycles. The specimens with RAP exhibited at least two times greater permanent deformation than the 100% aggregate material. As %RAP increased, more permanent deformation occurred. In summary, the base material produced with various %RAP content performed at a similar level to 100% aggregate in terms of MR and strength when properly compacted.Item Resilient Modulus Development of Aggregate Base and Subbase Containing Recycled Bituminous and Concrete for 2002 Design Guide and Mn/Pave Pavement Design(Minnesota Department of Transportation, 2007-06) Westover, Thomas; Labuz, Joseph; Guzina, BojanThe primary objective of this study was to quantify stiffness (resilient modulus) of aggregate base containing recycled asphalt and concrete pavements. After a survey of other state's specifications and implementation guidelines, Minnesota recycling projects were selected based on the availability of laboratory resilient modulus (MR) tests and field measurements from FWD. The projects were County State Aid Highway 3, Trunk Highway 23 and Trunk Highway 200. Based on the results of a parametric study, it was found that traditional peak-based analysis of FWD data can lead to significant errors in elastostatic backcalculation. A procedure for extracting the static response of the pavement was formulated and implemented in a software package called GopherCalc. Laboratory resilient modulus measurements were compared with moduli backcalculated from the FWD data. The FWD data was analyzed using conventional (peak-based) and modified (FRF-based) elastostatic backcalculation (Evercalc) as well as a simplified mechanistic empirical model called Yonapave. Laboratory values from sequences in the MR protocol that produced a similar state-of-stress were used. Additionally, a seasonal analysis of FWD test data revealed a significant increase in stiffness when the pavement is in the frozen state.