Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "PILP"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Multi-functional st-ELR Scaffold for Dentin Regeneration
    (2018-12) LAN, CAIXIA
    Pulpitis is one of the most widespread diseases in the world. Current advances in dental tissue engineering have provided an interesting alternative therapeutic approach in the field of regenerative endodontics. However, there remains a strong need to develop an optimized scaffold for supporting dentin regeneration. The objective of this PhD project is to develop a dental scaffold using elastin-like recombinamers(ELRs) to stimulate dentin regeneration while exhibiting antimicrobial ability to control potential re-infection of the pulp cavity. To provide a biomimetic scaffold that resembles the extracellular matrix in dentin tissue, we fabricated fibrous scaffold of ELRs using electrospinning technique and analyzed its ability in inducing biomimetic mineralization using the polymer-induced liquid precursor (PILP) process. The ELR scaffolds exhibited intra- and extra-fibrous mineralization, which highly mimicked the structure of mineralized native collagen in dentin. The scaffold is expected to be applied in the pulp cavity with direct contact with the pulp tissue. Therefore, we investigated the interaction between the mineralized ELR scaffold that contains statherin-derived peptide (st-ELR) and human dental pulp stem cells (hDPSCs). Proliferation and odontogenic differentiation of hDPSCs were analyzed and the study indicated that biomimetically mineralized st-ELR scaffold supported the proliferation and odontogenic differentiation of hDPSCs. Bacterial infection is considered as the major reason for the failure of implanted materials. Therefore, we functionalized st-ELR scaffold with antimicrobial peptides to prevent the potential infection caused by oral bacteria. A cysteine modified antimicrobial peptide GL13K(Cys-GL13K) was used in this study to achieve site-specific modification on the developed scaffold. First, we tethered Cys-GL13K peptides on titanium surface to analyze the properties and antimicrobial ability of immobilized peptides. A homogenous and strong coating of peptides was obtained. The tethered peptides exhibited promising antimicrobial ability against S. mutans, S. gordonii and E. faecalis. Furthermore, we bio-conjugated the peptides to st-ELR membranes using the same modification technique. Successful peptide modification was achieved, and the peptide functionalized st-ELR membrane exerted antimicrobial ability against S. mutans and S. gordonii. This research sheds light on the development and functionalization of scaffolds for the application of regenerating hard tissues such as dentin and bone. It allows the scaffold to highly resemble the architecture and physical properties of extracellular matrix in mineralized tissues. In addition, this research provides a new approach to modify the scaffold with diverse bioactive molecules to obtain multiple functions, while maintaining good interaction with native tissues.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues