Browsing by Subject "Frigid regions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Allowable Axle Loads on Pavements(Minnesota Department of Transportation Research Services Section, 2010-12) Bly, Peter; Tompkins, Derek; Khazanovich, LevThis report documents the development of a procedure to determine the structural adequacy and need of seasonal axle load restrictions for Minnesota low-volume roads. This procedure has been implemented into a new program, TONN2010. Since it is anticipated that the results of this study will be widely used by Mn/DOT, city, and county engineers, as well as consulting engineers involved in analysis of the falling weight deflectometer (FWD) data collected by the transportation agencies, an emphasis was made on development of a simple, easy to implement procedure. To simplify the procedure’s implementation, the number of inputs was minimized. TONN2010 utilizes pavement layer thicknesses, FWD deflection basins, air temperature of the previous day, pavement surface temperature at the time of testing, pavement location, and anticipated traffic. All the inputs required by TONN2010 can be easily obtained by the user. Using these inputs, TONN2010 proceeds to 1) backcalculate layer moduli using the backcalculation procedure developed in this study, 2) adjust the backcalculated moduli using MnPAVE temperature and seasonal adjustment factors, and 3) estimate pavement axle load capacity by mechanistic-empirical analysis. In addition to detailing TONN2010, the report further describes selection of the damage models, development of the backcalculation design procedure, determination of the critical structural responses, development of new structural rating indexes, and finally the calibration and validation of the proposed procedure.Item Permeable Pavements in Cold Climates: State of the Art and Cold Climate Case Studies(Center for Transportation Studies, University of Minnesota, 2015-06) Weiss, Peter T.; Kayhanian, Masoud; Khazanovich, Lev; Gulliver, John S.This document is an extensive review of full-depth permeable pavements including porous asphalt, pervious concrete, and permeable interlocking concrete pavers (PICP). Also included is a brief section on articulated concrete blocks/mats. The main topics, which have been divided into chapters, include structural and mix design, hydrologic design, hydraulic performance (i.e. infiltration capacity), maintenance needs/frequency/actions, the impact of permeable pavement on water quality, results of a highway shoulder feasibility study, knowledge gaps, and several cold climate case studies from the United States and Canada. While progress has recently been made with the relatively new permeable pavement technology, researchers have also identified many unresolved issues that are not well understood. These include a methodology to measure subgrade infiltration rates, filling data gaps related to structural integrity, construction, and related issues associated with permeable pavements, determining what maintenance activities are most effective on various pavement types and how frequently specific maintenance actions should be performed, a better understanding of the processes involved in the observed reduction of contaminant concentrations in stormwater flowing through permeable pavements, and a better understanding of the performance of permeable pavements over a time frame that better corresponds with a life-span of 20 years.