Browsing by Subject "Analytical"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Method Development and Degradation Studies to Verify the Stabilization of a Gallium Prodrug of Epinephrine(2021-09) Livezey, NicholasUtilizing the unique and varied properties of metals, such as their redox activity, lability, and net charge, metal-based prodrugs can be designed and optimized for numerous applications. The most prominent usage of metal-based prodrugs has historically been anti-cancer agents, though there have been more recent efforts in the development of theranostic and antimicrobial agents as well. Gallium has promise for extending the scope of metal-based prodrugs, as it has been FDA approved for the treatment of tumors and hypercalcemia. Epinephrine is a compelling target for a gallium-based prodrug as conventional prodrugs are not suitable for the treatment of anaphylactic shock. This is because the prodrugs are inactive during their long half-lives. Additionally, as should mitigate drug degradation from high pH, light, and heat. The development of a novel gallium prodrug of epinephrine establishes the first prodrug treatment of anaphylactic shock, and extends the chemical space of metal-based prodrugs.Item Surface-Enhanced Raman Spectroscopy of Analytes in Blood(2015-04) Campos, AntonioAlthough Raman scattering has traditionally been considered a weak process, making analysis of low concentration analytes in complex matrices difficult, both methodological and instrumentation advances in the last couple decades have made Raman spectroscopy a viable and useful analytical tool.1,9 This is especially true for analyte species within aqueous environments because the Raman scattering cross-section of water is small; one particular example of a critical aqueous environment is analysis of and in blood. This review will analyze much of the literature related to Raman analysis in blood within the last 20 years, including normal Raman, surface-enhanced Raman, and spatially offset Raman analyses. The first section will focus on direct analysis of blood samples, including determining the age of deposited or donated blood and blood content within body fluid mixtures. The second section will discuss intrinsic Raman-based detection of small molecules and protein analytes within blood as well as extrinsic Raman detection of tumors. The last section will review the recent use of spatially offset Raman and surface-enhanced spatially offset Raman spectroscopy to analyze molecular analytes, tissue, bone, tumors, and calcifications, including in vivo analysis. This focal point closes with perspective on critical gaps and upcoming developments for Raman analysis in blood. Microfluidic sensing platforms facilitate parallel, low sample volume detection using various optical signal transduction mechanisms. Herein, we introduce a simple mixing microfluidic device, enabling serial dilution of introduced analyte solution that terminates in five discrete sensing elements. We demonstrate the utility of this device with on-chip fluorescence and surface-enhanced Raman scattering (SERS) detection of analytes, and we demonstrate device use both when combined with a traditional inflexible SERS substrate and with SERS-active nanoparticles that are directly incorporated into microfluidic channels to create a flexible SERS platform. The results indicate, with varying sensitivities, that either flexible or inflexible devices can be easily used to create a calibration curve and perform a limit of detection study with a single experiment. In current events, ricin has been discussed frequently because of letters sent to high-ranking government officials containing the easily extracted protein native to castor beans. Ricin B chain, commercially available and not dangerous when separated from the A chain, enables development of ricin sensors while minimizing the hazards of working with a bioterror agent that does not have a known antidote. As the risk of ricin exposure, common for soldiers, becomes increasingly common for civilians, there is a need for a rapid, real-time detection of ricin. To this end, aptamers have been used recently as an affinity agent to enable the detection of ricin in food products via surface-enhanced Raman spectroscopy (SERS) on colloidal substrates. One goal of this work is to extend ricin sensing into whole human blood; this goal required application of a commonly used plasmonic surface, the silver film-over-nanosphere (AgFON) substrate, which offers SERS enhancement factors of 106 in whole human blood for up to 10 days. This aptamer-conjugated AgFON platform enabled ricin B chain detection for up to 10 days in whole human blood. Principle component analysis (PCA) of the SERS data clearly identifies the presence or absence of physiologically relevant concentrations of ricin B chain in blood. Spectrophotometry and colorimetry experiments are common in high school and college chemistry courses. Previous work has demonstrated that handheld camera devices can be used to quantify the concentration of a colored analyte in solution in place of traditional spectrophotometric or colorimetric equipment. This paper extends this approach to an investigation of a mesogold mineral supplement. With the addition of free Google applications, the investigation provides a feasible, sophisticated lab experience, especially for teachers with limited budgets.Item Timing Driven Analytical Placement for FPGA(2015-09) Agashiwala, NimishConventional Simulated Annealing (SA) based placement methods for FPGAs give best results in terms of wirelength and critical path delay. The runtime for these SA based methods is directly proportional to the total number of cells to be placed. In case of modern multi-million gate FPGAs, SA based methods for placement dominate the total runtime in the FPGA CAD flow. In this thesis, we propose a new fast and efficient timing driven analytical placement engine targeted at global placement for FPGAs followed by low temperature SA for detailed placement. Our global placement engine uses quadratic programming approach to minimize the wirelength and dynamic net weights based on timing criticality between the blocks to minimize the critical path delay. The placement engine proceeds by iteratively partitioning the placement area and making the Configurable Logic Blocks (CLBs) move near each partition's Center of Gravity (CG). After each iteration, to calculate the timing criticality between each CLB, they are snapped to physical grid locations. The placement engine uses this timing feedback to update the net weights and calculate new coordinates for the CLBs in the next iteration. We employ a spiral legalization method in the end to obtain a legalized placement which then undergoes low temperature Simulated Annealing in VPR to give comparable or better critical path delay and 8.7% bad overall wirelength after placement. Experimental results of 20 largest MCNC benchmark circuits show that our global placement engine outperforms the state-of-the-art academic placer VPR 7.0 in terms of runtime by 30% on an average, making it scalable and provides an overall similar QoR in terms of critical path delay.Item Wirelength-driven Analytical Placement for FPGA(2015-08) Upadhyay, Satya PrakashWith increasing complexity of modern circuit, FPGA demands to be dealt with good CAD algorithm and suitable architecture to meet the lower non-recurring engineering cost and faster time-to-market. Placement is one of the crucial steps among them, as it decides time for implementing FPGA, routing resources and power consumption by digital circuits. Our research is centered on the placement algorithm for FPGA design. Simulated Annealing (SA) being the most popular among all the placement methods for quality results, takes huge compile time to implement larger circuits with the current new architectures. Researchers try to find a way for getting similar or better results with less run time. Based on the requirement, placement can be wirelength driven, timing driven and path driven. There are alternate ways of placement which are based on min-cut algorithm and analytic placement, and take less time. We targeted to optimize wirelength while doing placement using Gordian method in multiple iteration to get similar results as that of well-known academic research tool for FPGA - Versatile Place and route (VPR). Each iteration divides a subspace in four partitions and applies linear and bounding constraint to solve for quadratic optimization. We bypassed the placement methodology of VPR with our placement algorithm of analytical placement, implemented in MATLAB, and then fed back the output of our placer to the VPR flow for detailed placement and routing. We compare our results of placement and routing using 20 MCNC benchmarks and homogeneous VTR benchmarks with the VPR flow. Our MATLAB placer is faster by 38% with the expense of wirelength quality. It gets 1% better wirelength with 11% increase in runtime compared to the whole VPR placer after low temperature simulated annealing based final detailed placement.