Browsing by Author "vanEngelsdorp, Dennis"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health(Public Library of Science, 2014) Chen, Yan Ping; Pettis, Jeffery S; Corona, Miguel; Chen, Wei Ping; Li, Cong Jun; Spivak, Marla; Visscher, P. Kirk; DeGrandi-Hoffman, Gloria; Boncristiani, Humberto; Zhao, Yan; vanEngelsdorp, Dennis; Delaplane, Keith; Solter, Leellen; Drummond, Francis; Kramer, Matthew; Lipkin, W. Ian; Palacios, Gustavo; Hamilton, Michele C; Smith, Barton; Huang, Shao Kang; Zheng, Huo Qing; Li, Ji Lian; Zhang, Xuan; Zhou, Ai Fen; Wu, Li You; Zhou, Ji Zhong; Lee, Myeong-L; Teixeira, Erica W; Li, Zhi Guo; Evans, Jay D; Schneider, David SIsraeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.Item A national survey of managed honey bee 2013–2014 annual colony losses in the USA(2015) Lee, Kathleen V.; Steinhauer, Nathalie; Rennich, Karen; Wilson, Michael E.; Tarpy, David R.; Caron, Dewey M.; Rose, Robyn; Delaplane, Keith S.; Baylis, Kathy; Lengerich, Eugene J.; Pettis, Jeff; Skinner, John A.; Wilkes, James T.; Sagili, Ramesh; vanEngelsdorp, DennisHoney bee colony losses are a major concern in the USA and across the globe. Long-term data on losses are critical for putting yearly losses in context. US colony loss surveys have been conducted yearly since the winter of 2006–2007. Here, we report the results from the eighth annual survey on winter losses and the second annual survey of summer and annual losses. There were 7425 valid respondents (7123 backyard, 190 sideline, and 112 commercial beekeepers) managing 497,855 colonies, 19 % of the total US colonies. Total losses reported were 19.8 % [95 % CI 19.3–20.3 %] over the summer, 23.7 % [95 % CI 23.3–24.1 %] over the winter, and 34.1 % [95 % CI 33.6–34.6 %] for the whole year. Average losses were 15.1 % [95 % CI 14.5–15.7 %] over the summer, 44.8 % [95 % CI 43.9–45.7 %] over the winter, and 51.1 % [95 % CI 50.2–51.6 %] for the whole year. While total winter loss was one of the lowest reported in 8 years, 66 % of all beekeepers had higher losses than they deemed acceptable.