Browsing by Author "Rogers, James P."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Cascading spatio-temporal pattern discovery(2011-05-02) Mohan, Pradeep; Shekhar, Shashi; Shine, James A.; Rogers, James P.Given a collection of Boolean spatio-temporal (ST) event-types, the cascading spatio-temporal pattern (CSTP) discovery process finds partially ordered subsets of these event-types whose instances are located together and occur serially. For example, analysis of crime datasets may reveal frequent occurrence of misdemeanors and drunk driving after and near bar closings on weekends, as well as after and near large gatherings such as football games. Discovering CSTPs from ST datasets is important for application domains such as public safety (e.g. identifying crime attractors and generators) and natural disaster planning(e.g. preparing for hurricanes). However, CSTP discovery presents multiple challenges; three important ones are (1) the exponential cardinality of candidate patterns with respect to the number of event types, (2) computationally complex ST neighborhood enumeration required to evaluate the interest measure and (3) the difficulty of balancing computational complexity and statistical interpretation. Current approaches for ST data mining focus on mining totally ordered sequences or unordered subsets. In contrast, our recent work explores partially ordered patterns. Recently, we represented CSTPs as directed acyclic graphs; proposed a new interest measure, the cascade participation index; outlined the general structure of a cascading spatio-temporal pattern miner (CSTPM); evaluated filtering strategies to enhance computational savings using a real world crime dataset and proposed a nested loop based CSTPM to address the challenge posed by exponential cardinality of candidate patterns. This paper adds to our recent work by offering a new computational insight, namely, that the computational bottleneck for CSTP discovery lies in the interest measure evaluation. With this insight, we propose a new CSTPM based on spatio-temporal partitioning that significantly lowers the cost of interest measure evaluation. Analytical evaluation shows that our new CSTPM is correct and complete. Results from significant amount of new experimental evaluation with both synthetic and real data show that our new ST partitioning based CSTPM outperforms the CSTPM from our previous work. We also present a case study that verifies the applicability of CSTP discovery process.Item Cascading Spatio-temporal pattern discovery: A summary of results(2010-01-14) Mohan, Pradeep; Shekhar, Shashi; Shine, James A.; Rogers, James P.Given a collection of Boolean spatio-temporal(ST) event types, the cascading spatio-temporal pattern (CSTP) discovery process finds partially ordered subsets of event-types whose instances are located together and occur in stages. For example, analysis of crime datasets may reveal frequent occurrence of misdemeanors and drunk driving after bar closings on weekends and after large gatherings such as football games. Discovering CSTPs from ST datasets is important for application domains such as public safety (e.g. crime attractors and generators) and natural disaster planning(e.g. hurricanes). However, CSTP discovery is challenging for several reasons, including both the lack of computationally efficient, statistically meaningful metrics to quantify interestingness, and the large cardinality of candidate pattern sets that are exponential in the number of event types. Existing literature for ST data mining focuses on mining totally ordered sequences or unordered subsets. In contrast, this paper models CSTPs as partially ordered subsets of Boolean ST event types. We propose a new CSTP interest measure (the Cascade Participation Index) that is computationally cheap (O(n2) vs. exponential, where n is the dataset size) as well as statistically meaningful. We propose a novel algorithm exploiting the ST nature of datasets and evaluate filtering strategies to quickly prune uninteresting candidates. We present a case study to find CSTPs from real crime reports and provide a statistical explanation. Experimental results indicate that the proposed multiresolution spatio-temporal(MST) filtering strategy leads to significant savings in computational costs.Item Discovering and Quantifying Mean Streets: A Summary of Results(2007-10-25) Celik, Mete; Shekhar, Shashi; George, Betsy; Rogers, James P.; Shine, James A.Mean streets represent those connected subsets of a spatial network whose attribute values are significantly higher than expected. Discovering and quantifying mean streets is an important problem with many applications such as detecting high-crime-density streets and high crash roads (or areas) for public safety, detecting urban cancer disease clusters for public health, detecting human activity patterns in asymmetric warfare scenarios, and detecting urban activity centers for consumer applications. However, discovering and quantifying mean streets in large spatial networks is computationally very expensive due to the difficulty of characterizing and enumerating the population of streets to define a norm or expected activity level. Previous work either focuses on statistical rigor at the cost of computational exorbitance, or concentrates on computational efficiency without addressing any statistical interpretation of algorithms. In contrast, this paper explores computationally efficient algorithms for use on statistically interpretable results. We describe alternative ways of defining and efficiently enumerating instances of subgraph families such as paths. We also use statistical models such as the Poisson distribution and the sum of independent Poisson distributions to provide interpretations for results. We define the problem of discovering and quantifying mean streets and propose a novel mean streets mining algorithm. Experimental evaluations using synthetic and real-world datasets show that the proposed method is computationally more efficient than nave alternatives.Item Mixed-Drove Spatio-Temporal Co-occurrence Pattern Mining(2008-05-06) Celik, Mete; Shekhar, Shashi; Rogers, James P.; Shine, James A.Mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) represent subsets of two or more different object-types whose instances are often located in spatial and temporal proximity. Discovering MDCOPs is an important problem with many applications such as identifying tactics in battlefields, games, and predator-prey interactions. However, mining MDCOPs is computationally very expensive because the interest measures are computationally complex, datasets are larger due to the archival history, and the set of candidate patterns is exponential in the number of object-types. We propose a monotonic composite interest measure for discovering MDCOPs and novel MDCOP mining algorithms. Analytical results show that the proposed algorithms are correct and complete. Experimental results also show that the proposed methods are computationally more efficient than naive alternatives.