Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Cascading Spatio-temporal pattern discovery: A summary of results

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Cascading Spatio-temporal pattern discovery: A summary of results

Published Date

2010-01-14

Publisher

Type

Report

Abstract

Given a collection of Boolean spatio-temporal(ST) event types, the cascading spatio-temporal pattern (CSTP) discovery process finds partially ordered subsets of event-types whose instances are located together and occur in stages. For example, analysis of crime datasets may reveal frequent occurrence of misdemeanors and drunk driving after bar closings on weekends and after large gatherings such as football games. Discovering CSTPs from ST datasets is important for application domains such as public safety (e.g. crime attractors and generators) and natural disaster planning(e.g. hurricanes). However, CSTP discovery is challenging for several reasons, including both the lack of computationally efficient, statistically meaningful metrics to quantify interestingness, and the large cardinality of candidate pattern sets that are exponential in the number of event types. Existing literature for ST data mining focuses on mining totally ordered sequences or unordered subsets. In contrast, this paper models CSTPs as partially ordered subsets of Boolean ST event types. We propose a new CSTP interest measure (the Cascade Participation Index) that is computationally cheap (O(n2) vs. exponential, where n is the dataset size) as well as statistically meaningful. We propose a novel algorithm exploiting the ST nature of datasets and evaluate filtering strategies to quickly prune uninteresting candidates. We present a case study to find CSTPs from real crime reports and provide a statistical explanation. Experimental results indicate that the proposed multiresolution spatio-temporal(MST) filtering strategy leads to significant savings in computational costs.

Keywords

Description

Related to

Replaces

License

Series/Report Number

Technical Report; 10-001

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Mohan, Pradeep; Shekhar, Shashi; Shine, James A.; Rogers, James P.. (2010). Cascading Spatio-temporal pattern discovery: A summary of results. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215819.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.