Browsing by Author "Ollinger, Scott V"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Predicting the effects of climate change on water yield and forest production in the northeastern United States(1995) Aber, John D; Ollinger, Scott V; Federer, C. Anthony; Reich, Peter B; Goulden, Michael L; Kicklighter, David W; Melillo, Jerry M; Lathrop, Richard G JrRapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region.Item Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes(1997) Ollinger, Scott V; Aber, John D; Reich, Peter BOzone pollution in the lower atmosphere is known to have adverse effects on forest vegetation, but the degree to which mature forests are impacted has been very difficult to assess directly. In this study, we combined leaf-level ozone response data from independent ozone fumigation studies with a forest ecosystem model in order simulate the effects of ambient ozone on mature hardwood forests. Reductions in leaf carbon gain were determined as a linear function of ozone flux to the leaf interior, calculated as the product of ozone concentration and leaf stomatal conductance. This relationship was applied to individual canopy layers within the model in order to allow interaction with stand- and canopy-level factors such as light attenuation, leaf morphology, soil water limitations, and vertical ozone gradients. The resulting model was applied to 64 locations across the northeastern United States using ambient ozone data from 1987 to 1992. Predicted declines in annual net primary production ranged from 3 to 16% with greatest reductions in southern portions of the region where ozone levels were highest, and on soils with high water-holding capacity where drought stress was absent. Reductions in predicted wood growth were slightly greater (3–22%) because wood is a lower carbon allocation priority in the model than leaf and root growth. Interannual variation in predicted ozone effects was small due to concurrent fluctuations in ozone and climate. Periods of high ozone often coincided with hot, dry weather conditions, causing reduced stomatal conductance and ozone uptake. Within-canopy ozone concentration gradients had little effect on predicted growth reductions because concentrations remained high through upper canopy layers where net carbon assimilation and ozone uptake were greatest. Sensitivity analyses indicate a trade-off between model sensitivity to available soil water and foliar nitrogen and demonstrate uncertainties regarding several assumptions used in the model. Uncertainties surrounding ozone effects on stomatal function and plant water use efficiency were found to have important implications on current predictions. Field measurements of ozone effects on mature forests will be needed before the accuracy of model predictions can be fully assessed.Item Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes(1997) Ollinger, Scott V; Reich, Peter BOzone pollution in the lower atmosphere is known to have adverse effects on forest vegetation, but the degree to which mature forests are impacted has been very difficult to assess directly. In this study, we combined leaf-level ozone response data from independent ozone fumigation studies with a forest ecosystem model in order simulate the effects of ambient ozone on mature hardwood forests. Reductions in leaf carbon gain were determined as a linear function of ozone flux to the leaf interior, calculated as the product of ozone concentration and leaf stomatal conductance. This relationship was applied to individual canopy layers within the model in order to allow interaction with stand- and canopy-level factors such as light attenuation, leaf morphology, soil water limitations, and vertical ozone gradients. The resulting model was applied to 64 locations across the northeastern United States using ambient ozone data from 1987 to 1992. Predicted declines in annual net primary production ranged from 3 to 16% with greatest reductions in southern portions of the region where ozone levels were highest, and on soils with high water-holding capacity where drought stress was absent. Reductions in predicted wood growth were slightly greater (3–22%) because wood is a lower carbon allocation priority in the model than leaf and root growth. Interannual variation in predicted ozone effects was small due to concurrent fluctuations in ozone and climate. Periods of high ozone often coincided with hot, dry weather conditions, causing reduced stomatal conductance and ozone uptake. Within-canopy ozone concentration gradients had little effect on predicted growth reductions because concentrations remained high through upper canopy layers where net carbon assimilation and ozone uptake were greatest. Sensitivity analyses indicate a trade-off between model sensitivity to available soil water and foliar nitrogen and demonstrate uncertainties regarding several assumptions used in the model. Uncertainties surrounding ozone effects on stomatal function and plant water use efficiency were found to have important implications on current predictions. Field measurements of ozone effects on mature forests will be needed before the accuracy of model predictions can be fully assessed.