Browsing by Author "Manickavasagan, Vishruthi"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Cost Estimate of B vs. C Grade Asphalt Binders(Minnesota Department of Transportation, 2023-06) Yan, Tianhao; Marasteanu, Mihai; Turos, Mugurel; Barman, Manik; Manickavasagan, Vishruthi; Chakraborty, ManikPolymer-modified binders (PMB) have been shown over the decades to improve the mechanical properties of asphalt mixtures compared to unmodified binders. Considering the higher initial cost of PMB, selecting the best alternative is very important, especially for local agencies given their limited budgets. A challenge in the materials selection process for low-volume roads is the limited information available, which could allow engineers to determine whether using PMB is cost-effective. In this research, we investigate the use of PG 58H-34 PMB binders (grade C) and PG58S-28 unmodified binders (grade B) for low volume roads in Minnesota. Historical pavement performance data are analyzed to compare the field performance of modified and unmodified mixtures. Laboratory experiments are performed to compare the low-temperature cracking properties of polymer-modified and unmodified binders and mixtures commonly used in Minnesota. Based on the experimental results, a lifecycle cost analysis (LCCA) is performed comparing the use of polymer-modified and unmodified binders for lowvolume roads in Minnesota. The results show that using PMBs for new construction is expected to extend the pavement service life by 6 years, and that using PMB is more cost-effective than using unmodified binders for low-traffic roads.Item Optimizing Asphalt Mixtures for Low-volume Roads in Minnesota(Minnesota Department of Transportation, 2023-08) Barman, Manik; Dhasmana, Heena; Manickavasagan, Vishruthi; Marasteanu, MihaiMinnesota has a large number of low-volume asphalt roads. These roads typically fail because of environmental factors, such as frigid temperatures, freeze-thaw cycles, and seasonal and daily temperature variations. The goal of this study was to suggest modifications to asphalt mixture designs currently used for low-volume roads in Minnesota to improve the resistance of the mixes against the environmentally driven distresses. The study was conducted by accomplishing multiple tasks, such as a literature review, online survey, fieldwork studying the cause of the asphalt pavement distresses, laboratory work comparing asphalt mixtures designed with Superpave-4, Superpave-5, and regressed air voids methods, and studying the field compaction of Superpave-5 mixes. The mechanical performance of the asphalt mixes was studied by conducting Disc-Shaped Compact Tension (DCT), Indirect Tensile Strength (ITS), and Dynamic Modulus (DM) tests. The study included both laboratory- and plant-produced mixes. The study found that asphalt layers for the low-volume roads did not get enough densification, which augments environmentally driven distresses, such as thermal cracks, and longitudinal joint cracks. The Superpave-5 method holds considerable promise for the design of asphalt mixtures for low-volume roads in Minnesota, which may likely increase the asphalt layer densification and mitigate some of the common distresses.