Browsing by Author "Campbell, Karen"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item 3D Maps(2024-04-29) Campbell, Karen; Morin, Paul; kmc@umn.edu; Campbell, Karen; National Center for Earth-Surface Dynamics (NCED)NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps. This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications. Maps are best when viewed with RED/CYAN anaglyph glasses! A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.Item Physical Model Study of Marmot Dam Removal: Cofferdam Notch Location and Resulting Fluvial Responses(St. Anthony Falls Laboratory, 2007-09) Marr, Jeffrey D.G.; Hill, Craig; Johnson, Sara; Grant, Gordon; Campbell, Karen; Mohseni, OmidThis report summarizes observations made for a set of experiments conducted using the physical model of the Sandy River and Marmot Dam constructed for Portland General Electric (PGE). The experiments focused on the location of the cofferdam notch and its impact on the immediate sediment remobilization, knickpoint location and trajectory, volume of removal, and location of stranded sediment. The motivation for the study was to provide insights on how and if the position of a cofferdam notch will have an impact on how the site fails and how the reservoir sediments are remobilized. Based on early experiments with the model, PGE expressed concern that some failure scenarios resulted in abandonment of large terraces of sediment near the dam site, posing potential public safety issues. One goal of these experiments was to determine if cofferdam notch location could be positioned to minimize the volume of sediment stranded in terraces. Eight model scenarios were completed for this study. Seven of the scenarios examined a failure discharge of 2500 cfs (cubic feet per second), the minimum failure design discharge. Within these seven scenarios, we examined three notch positions; river right (north bank of river), center, and river left (south bank of river). In an eighth scenario we examined a river right notch location and failure at a high discharge of 5500 cfs. Sediment mixtures used in the model were scaled to sediment core data of the Sandy River reservoir sediment. The data and observations indicate that at the minimum design failure discharge of 2500 cfs, notch position does impact the location of cofferdam failure as well as the location of the first major knickpoint and its trajectory. The data suggest that a river left notch position minimizes the extent of stranded sediment terraces and a river right notch tends to result in larger terraces. A center notch position yielded similar results to the river right notch. At a discharge of 5500 cfs, results suggest that notch position is less important than at lower discharge rates, as the knickpoint is more or less bank to bank and is able to mobilize sediment more effectively.