Browsing by Author "Barman, Manik"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Comparison of Performances of Structural Fibers and Development of a Specification for Using Them in Thin Concrete Overlays(Minnesota Department of Transportation, 2018-08) Barman, Manik; Hansen, BryceStructural fibers improve the long-term performance of concrete pavements and overlays and potentially are useful to reduce the slab thickness. These fibers are available in different parent material compositions, stiffness, shapes, and aspect ratios. The main objective of this study was to characterize the post-crack flexural and joint performance of fiber reinforced concrete to develop a specification for the selection of structural fibers for concrete overlays and/or pavements. The study included a literature review, an online survey, and a large-scale laboratory testing. It was found that the majority (almost 94%) of the FRC overlays in this country were constructed with structural synthetic fibers, which provided equal or better performance than projects using the steel fibers. In the laboratory study, a total of 43 different mixes were prepared with 11 different types of fibers. Fiber dosage, stiffness, and geometry significantly influenced the residual strength ratio (RSR) and residual strength (RS). In general, embossed, twisted, and crimped fibers performed better on average than straight-flat synthetic fibers when the comparison was made in terms of RSR or RS. From the joint performance testing, it was found that fibers can greatly improve the performance of the pavement with respect to load transfer efficiency (LTE), differential displacement, and differential joint energy dissipation. The findings from this were used to recommend the target ranges post-crack flexural performance, and joint performance parametersItem Comprehensive Field Evaluation of Asphalt Patching Methods and Development of Simple Decision Trees and a Best Practices Manual(Minnesota Department of Transportation, 2017-06) Barman, Manik; Dailey, Jay; Dave, Eshan V.; Kostick, Robert D.The long-term performance of pothole patches largely depends on the selection of the patching method. A number of pothole patching methods are in practice in Minnesota and other nearby states. However, pavement maintenance crews often encounter problems in selecting the most appropriate patching method because proper guidelines are not available. The objective of this project was to investigate the effectiveness of different pavement patching methods and to develop simple decision trees and a best practices manual. The performance of 20 different pothole patches, which were patched with four different types of patching methods and located at five different construction sites, were monitored for approximately two years. Based on the observed performance of the pothole patches considered in this study, two forms of decision trees and a best practices manual have been developed for selecting the most appropriate patching method for a given pothole condition. The developed decision trees can be used to select the patching method based on the location of the pothole (e.g., along longitudinal joints, localized potholes, etc.), construction season, condition of the pothole, and pothole area and depth. The best practices manual provides guidelines on the selection of patching method, pothole preparation, placement of patching materials, and compaction.Item Cost Estimate of B vs. C Grade Asphalt Binders(Minnesota Department of Transportation, 2023-06) Yan, Tianhao; Marasteanu, Mihai; Turos, Mugurel; Barman, Manik; Manickavasagan, Vishruthi; Chakraborty, ManikPolymer-modified binders (PMB) have been shown over the decades to improve the mechanical properties of asphalt mixtures compared to unmodified binders. Considering the higher initial cost of PMB, selecting the best alternative is very important, especially for local agencies given their limited budgets. A challenge in the materials selection process for low-volume roads is the limited information available, which could allow engineers to determine whether using PMB is cost-effective. In this research, we investigate the use of PG 58H-34 PMB binders (grade C) and PG58S-28 unmodified binders (grade B) for low volume roads in Minnesota. Historical pavement performance data are analyzed to compare the field performance of modified and unmodified mixtures. Laboratory experiments are performed to compare the low-temperature cracking properties of polymer-modified and unmodified binders and mixtures commonly used in Minnesota. Based on the experimental results, a lifecycle cost analysis (LCCA) is performed comparing the use of polymer-modified and unmodified binders for lowvolume roads in Minnesota. The results show that using PMBs for new construction is expected to extend the pavement service life by 6 years, and that using PMB is more cost-effective than using unmodified binders for low-traffic roads.Item Cost/Benefit Analysis of the Effectiveness of Crack Sealing Techniques(Minnesota Department of Transportation., 2019-06) Barman, Manik; Munch, Jared; Arepalli, Uma MCrack sealing is an important preventive treatment in the pavement preservation program. To achieve a cost-effective crack seal, it is important to select a proper crack sealing method. While Minnesota usually seals cracks in asphalt pavements, there is no clear consensus on the most appropriate crack sealing method for a specific job. This study focused on developing a guideline so that a cost-effective crack sealing method could be chosen based on pavement type, functional condition, pavement age, and traffic volume etc. This study includes a literature review, online survey, field performance data collection and analysis, and development of a guideline. The effectiveness of the crack seals was determined using a benefit-cost analysis. Two decision trees were developed for choosing the most appropriate crack sealing method. The first, which can be used in MnDOT’s pavement management system, needs information such as crack severity, pavement type (new vs overlay), pavement analysis period and design life, traffic level, and crack seal occurrence number. The second decision tree, which is a simplified version of the first and can be used by the preventive maintenance crews and requires less information: crack severity, traffic level, and crack sealing occurrence number.Item Establishing Fresh Properties of Fiber Reinforced Concrete for Performance Engineered Mixture (PEM)(Minnesota Department of Transportation, 2022-06) Barman, Manik; Kamara, Alieu; Janson, AustinThe addition of macro or structural fibers into concrete enhances its post-cracking performance. The objective of this study was to conduct a laboratory investigation to determine the influence of structural fibers on the fresh concrete test parameters (Super air meter (SAM) number, V-Kelly index, and Box test rating) recommended for the performance engineered mixture (PEM) procedure. As many as fifty-seven different concrete mixes were designed and prepared, varying fiber types and dosages, aggregate types, and air contents of the concrete. Various fresh and hardened concrete tests were conducted on each of the mixes, and the results were used to determine the influence of the structural fibers on the fresh and hardened concrete properties. The study recommended the allowable range of the SAM number and provided necessary guidance on the box test rating and V-Kelly index for the fiber-reinforced concrete mixtures to be designed as per the PEM procedure.Item Experimental and Computational Investigations of High-Density Asphalt Mixtures(Minnesota Department of Transportation, 2019-10) Marasteanu, Mihai; Le, Jia-Liang; Hill, Kimberly; Yan, Tianhao; Man, Teng; Turos, Mugurel; Barman, Manik; Arepalli, Uma Maheswar; Munch, JaredCompaction of asphalt mixtures represents a critical step in the construction process that significantly affects the performance and durability of asphalt pavements. In this research effort, the compaction process of asphalt mixtures was investigated using a combined experimental and computational approach. The primary goal was to understand the main factors responsible for achieving good density and was triggered by the success of a recently proposed Superpave 5 mix design method. First, a two-scale discrete element method (DEM) model was developed to simulate the compaction process of asphalt mixtures. The computational model was anchored by a fluid dynamics-discrete element model, which is capable of capturing the motion of aggregates in the viscous binder. The model was then calibrated and validated by a series of experiments, which included rheological tests of the binder and a compaction test of the mixture. It was concluded that the compaction process was significantly influenced by the rheological properties of the fine aggregate matrix and by the sphericity of the coarse aggregates. Finally, the mechanical properties of two high-density mixtures were determined and compared with mechanical properties of mixtures used for MnROAD 2017 National road Research Alliance (NRRA) test sections. It was found that the properties of high-density mixtures as a group were not significantly different compared to the properties of conventional mixtures.Item Optimizing Asphalt Mixtures for Low-volume Roads in Minnesota(Minnesota Department of Transportation, 2023-08) Barman, Manik; Dhasmana, Heena; Manickavasagan, Vishruthi; Marasteanu, MihaiMinnesota has a large number of low-volume asphalt roads. These roads typically fail because of environmental factors, such as frigid temperatures, freeze-thaw cycles, and seasonal and daily temperature variations. The goal of this study was to suggest modifications to asphalt mixture designs currently used for low-volume roads in Minnesota to improve the resistance of the mixes against the environmentally driven distresses. The study was conducted by accomplishing multiple tasks, such as a literature review, online survey, fieldwork studying the cause of the asphalt pavement distresses, laboratory work comparing asphalt mixtures designed with Superpave-4, Superpave-5, and regressed air voids methods, and studying the field compaction of Superpave-5 mixes. The mechanical performance of the asphalt mixes was studied by conducting Disc-Shaped Compact Tension (DCT), Indirect Tensile Strength (ITS), and Dynamic Modulus (DM) tests. The study included both laboratory- and plant-produced mixes. The study found that asphalt layers for the low-volume roads did not get enough densification, which augments environmentally driven distresses, such as thermal cracks, and longitudinal joint cracks. The Superpave-5 method holds considerable promise for the design of asphalt mixtures for low-volume roads in Minnesota, which may likely increase the asphalt layer densification and mitigate some of the common distresses.Item Performance Benefits of Fiber-Reinforced Thin Concrete Pavement and Overlays(Minnesota Department of Transportation, 2021-07) Barman, Manik; Roy, Souvik; Tiwari, Amarjeet; Burnham, TomThis study investigates the performance benefits of synthetic structural fibers in mitigating distresses in thin concrete pavements and overlays. In this study, two ultra-thin (3 and 4 inches thick) and four thin (5 and 6 inches thick) concrete pavements placed on a gravel base along with two thin unbonded concrete overlay cells (5 inches thick) placed on an existing concrete pavement were constructed at the Minnesota Road Research (MnROAD) facility in 2017. This report discusses the objectives and methodology of the research, including the construction of the test cells, instrumentation, traffic load application, and data collection and analysis procedures. The structural responses and distresses observed over three years, such as fatigue cracking and faulting, as well as the joint performance measured in each cell, were discussed and compared in this report.Item Toward the development of pavement-specific structural synthetic fibers(Minnesota Department of Transportation, 2024-06) Barman, Manik; Sabu, Rohith; Sharma, Pranav; Janson, AustinThin fiber reinforced concrete (FRC) pavements and overlays can be economical for low- and moderate-traffic volume roads. Due to insufficient concrete cover thickness, thin concrete pavements or overlays cannot accommodate dowel bars that are typically used in conventional thick concrete pavements. The critical distress for such applications is the transverse joint faulting because of the lack of joint load transfer between the concrete slabs. The currently available synthetic structural fibers can contribute to joint performance to a certain extent. However, as pavements experience significant slab contraction and expansion and carry both wheel and environmental loads, there is a need to design and develop fibers that will provide high joint performance and help mitigate transverse joint faulting when used at an affordable dosage. The overall goal of this study is to develop pavement-specific fibers that will yield the needed joint performance benefits to achieve the intended design life. The study is being conducted in two phases. This report is written for Phase 1 of the study. The study started with a literature review, followed by a finite element analysis, falling weight deflectometer (FWD) data analysis, and laboratory testing of fiber reinforced concrete and individual fibers embedded in concrete. The finite element results and FWD data were amalgamated to quantify the possible joint load transfer of the base layer and foundation, aggregate interlocking, and the needed contribution from the structural fibers. A procedure was established to account for the contribution of the fibers. A new parameter, namely, modulus of fiber support, was introduced to evaluate the stiffness of the fibers that participate in joint load transfer. Notably, a laboratory approach is identified to determine the modulus of fiber support, which can help determine the optimum fiber dosages as well as design and test the pavement-specific fibers in the future phase of the study.