Statistics for Solving large double digestion problems for DNA restriction mapping by using branch-and-bound integer linear programming

Total visits

views
Solving large double digestion problems for DNA restriction mapping by using branch-and-bound integer linear programming 642

Total visits per month

views
November 2024 0
December 2024 1
January 2025 0
February 2025 0
March 2025 0
April 2025 0
May 2025 0

File Visits

views
2176.pdf 616

Top country views

views
United States 283
China 93
India 41
Germany 37
France 35
Canada 22
United Kingdom 12
Pakistan 12
Russia 10
Malaysia 6
South Korea 5
Turkey 5
Italy 4
Singapore 4
Australia 3
Finland 3
Hong Kong SAR China 3
Iran 3
Thailand 3
United Arab Emirates 2
Switzerland 2
Ireland 2
Mexico 2
Saudi Arabia 2
Sweden 2
A1 1
AP 1
Bosnia & Herzegovina 1
Bangladesh 1
Cyprus 1
Denmark 1
Algeria 1
Estonia 1
Egypt 1
European Union 1
Hungary 1
Morocco 1
Poland 1
Puerto Rico 1
Romania 1
Senegal 1
Tanzania 1

Top city views

views
Redmond 76
Shenzhen 59
Ashburn 42
Beijing 19
Sunnyvale 15
Islamabad 9
Seattle 7
Montréal 6
New Delhi 6
Philadelphia 6
Redwood City 6
Indianapolis 5
Palo Alto 5
Zhengzhou 5
Kolkata 4
Riverside 4
Shanghai 4
Ames 3
Mumbai 3
Pasadena 3
Saint Petersburg 3
Woodbridge 3
Belleville 2
Birmingham 2
Boardman 2
Buffalo 2
Chapel Hill 2
Dayton 2
Des Moines 2
Dublin 2
Fremont 2
Göteborg 2
Göttingen 2
Hyderabad 2
Istanbul 2
Kuala Lumpur 2
Lansing 2
London 2
Luton 2
Mountain View 2
Newark 2
North Dartmouth 2
Provo 2
Puchong 2
San Mateo 2
Seoul 2
Singapore 2
Staten Island 2
Storrs 2
Tokyo 2
University Park 2
Abbotsford 1
Ahmedabad 1
Alexandria 1
Anandnagar 1
Athens 1
Aurora 1
Bad Homburg 1
Bangalore 1
Bangkok 1
Bloomington 1
Brampton 1
Bronx 1
Brooklyn 1
Burke 1
Bydgoszcz 1
Charlotte 1
Columbia 1
Dakar 1
Dallas 1
Deer Park 1
Delhi 1
Dhaka 1
Dubai 1
Edmonton 1
Fars 1
Fuzhou 1
Garching 1
Glasgow 1
Glenvale 1
Grapevine 1
Greensburg 1
Halle 1
Hangzhou 1
Hartford 1
Howrah 1
Irvine 1
Izmir 1
Kalamazoo 1
Kansas City 1
Karachi 1
Keego Harbor 1
Kisa 1
Kitchener 1
Kota 1
Kuching 1
La Verne 1
Malad 1
Manchester 1
Mankato 1