Anomaly Detection for Discrete Sequences: A Survey
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Anomaly Detection for Discrete Sequences: A Survey
Alternative title
Published Date
2009-05-22
Publisher
Type
Report
Abstract
This survey attempts to provide a comprehensive and structured overview of the existing research for the problem of detecting anomalies in discrete sequences. The aim is to provide a global understanding of the sequence anomaly detection problem and how techniques proposed for different domains relate to each other. Our specific contributions are as follows:
We identify three distinct formulations of the anomaly detection problem, and review techniques from many disparate and disconnected domains that address each of these formulations. Within each problem formulation, we group techniques into categories based on the nature of the underlying algorithm. For each category, we provide a basic anomaly detection technique, and show how the existing techniques are variants of the basic technique. This approach shows how different techniques within a category are related or different from each other. Our categorization reveals new variants and combinations that have not been investigated before for anomaly detection. We also provide a discussion of relative strengths and weaknesses of different techniques. We show how techniques developed for one problem formulation can be adapted to solve a different formulation; thereby providing several novel adaptations to solve the different problem formulations. We highlight the applicability of the techniques that handle discrete sequences to other related areas such as online anomaly detection and time series anomaly detection.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 09-015
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Chandola, Varun; Banerjee, Arindam; Kumar, Vipin. (2009). Anomaly Detection for Discrete Sequences: A Survey. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215802.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.