Silicon quantum dots for optical applications
2015-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Silicon quantum dots for optical applications
Authors
Published Date
2015-08
Publisher
Type
Thesis or Dissertation
Abstract
Luminescent silicon quantum dots (SiQDs) are emerging as attractive materials for optoelectronic devices, third generation photovoltaics, and bioimaging. Their applicability in the real world is contingent on their optical properties and long-term environmental stability; and in biological applications, factors such as water solubility and toxicity must also be taken into consideration. The aforementioned properties are highly dependent on the QD's surface chemistry. In this work, SiQDs were engineered for the respective applications using liquid-phase and gas-phase functionalization techniques. Preliminary work in luminescent downshifting for photovoltaic systems are also reported. Highly luminescent SiQDs were fabricated by grafting unsaturated hydrocarbons onto the surface of hydrogen-terminated SiQDs via thermal and photochemical hydrosilylation. An industrially attractive, all gas-phase, nonthermal plasma synthesis, passivation (aided by photochemical reactions), and deposition process was also developed to reduce solvent waste. With photoluminescence quantum yields (PLQYs) nearing 60 %, the alkyl-terminated QDs are attractive materials for optical applications. The functionalized SiQDs also exhibited enhanced thermal stability as compared to their unfunctionalized counterparts, and the photochemically-hydrosilylated QDs further displayed photostability under UV irradiation. These environmentally-stable SiQDs were used as luminescent downshifting layers in photovoltaic systems, which led to enhancements in the blue photoresponse of heterojunction solar cells. Furthermore, the QD films demonstrated antireflective properties, improving the coupling efficiency of sunlight into the cell. For biological applications, oxide, amine, or hydroxyl groups were grafted onto the surface to create water-soluble SiQDs. Luminescent, water-soluble SiQDs were produced in by microplasma treating the QDs in water. Stable QYs exceeding 50 % were obtained. Radical-based and catalytic hydrosilylation reactions were also investigated to engineer individually-dispersed SiQDs in water. The results of this dissertation demonstrate the potential of SiQDs in optical applications. In the future, their application may lead to improvements in the efficiencies of photovoltaic devices and perhaps allow the cells to exceed the Shockley-Queisser limit. In biology, the stability of the SiQDs may allow long-term monitoring of biomolecules and perhaps lead to new discoveries.
Description
University of Minnesota Ph.D. dissertation. August 2015. Major: Mechanical Engineering. Advisor: Uwe Kortshagen. 1 computer file (PDF); x, 129 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Wu, Jeslin. (2015). Silicon quantum dots for optical applications. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/175374.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.