Partitioning Algorithms for Simultaneously Balancing Iterative and Direct Methods
2004-03-03
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Partitioning Algorithms for Simultaneously Balancing Iterative and Direct Methods
Alternative title
Authors
Published Date
2004-03-03
Publisher
Type
Report
Abstract
This paper focuses on domain decomposition-based numerical simulations whose sub-problems corresponding to the various subdomains are solved using sparse direct factorization methods (eg., FETI). Effective load-balancing of such computations requires that the resulting partitioning simultaneously balances the amount of time required to factor the local subproblem using direct factorization, and the number of elements assigned to each processor. Unfortunately, existing graph-partitioning algorithms cannot be used to load-balance these type of computations as they can only compute partitionings that simultaneously balance numerous constraints defined a~priori on the vertices and optimize different objectives defined locally on the edges. To address this problem, we developed an algorithm that follows a {em predictor-corrector} approach that first computes a high-quality partitioning of the underlying graph, and then modifies it to achieve the desired balancing constraints. During the corrector step we compute a fill reducing ordering for each partition, and then we modify the initial partitioning and ordering so that our objectives are satisfied. Experimental results show that the proposed algorithm is able to reduce the fill-in of the overweight sub-domains and achieve a considerably better balance.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 04-014
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Moulitsas, Irene; Karypis, George. (2004). Partitioning Algorithms for Simultaneously Balancing Iterative and Direct Methods. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215608.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.