Validated Numerical Simulations Investigating the Effects of Cross-sectional Asymmetry on Fluid Flow and Heat Transfer
2017-11
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Validated Numerical Simulations Investigating the Effects of Cross-sectional Asymmetry on Fluid Flow and Heat Transfer
Authors
Published Date
2017-11
Publisher
Type
Thesis or Dissertation
Abstract
The work documented in this thesis focuses on numerical analysis as the primary means of gaining insight into the behavior of fluid flow and associated heat transfer in a situation where some kind of cross-sectional asymmetry has been introduced in the flow. As such, results from numerical experiments validating experimental data in asymmetric flow around pipe bends are presented near the beginning of this work. Thereafter, the results of numerical investigation into three situations have been presented. The first involves analyzing fluid flow in a piezometer ring, a device widely used to measure pressure in pipes, where the flow is cross-sectionally asymmetric due to the ring being present right after a 90° bend. The results from this chapter include recommendations for tap-off angles in a piezometer ring and the relative diameters of the ring and the tubes connecting it to the main pipe. The second situation involves numerical analysis of a rectangular fluid jet switching axes before impinging on a flat plate. The switching of axes in rectangular jets is a commonly observed asymmetry in fluid flow that is seldom investigated numerically due to very high computational cost. The results from this chapter present correlations that accurately predict experimental data on heat transfer from plate center, and graphs and figures that demonstrate the off-centered position of the areas of highest heat transfer on the plate. The third and final situation involves numerically analyzing 90° pipe bends of varying radii of curvature, fitted with orifices of varying blockage positioned at the start of the bend, for effects on heat transfer from the portion of the pipe past the bend. The effect of both the bend and the orifice is to introduce asymmetry in the flow and the results presented demonstrate the relative influence of the orifice and the bend radii on fluid flow and heat transfer from the straight section of the pipe after the bend.
Description
University of Minnesota Ph.D. dissertation. November 2017. Major: Mechanical Engineering. Advisor: Ephraim Sparrow. 1 computer file (PDF); vii, 120 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Ghosh, Abhimanyu. (2017). Validated Numerical Simulations Investigating the Effects of Cross-sectional Asymmetry on Fluid Flow and Heat Transfer. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/193431.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.