Biopolymer Simulations: From Next-Generation Genomics to Consumer Products

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Biopolymer Simulations: From Next-Generation Genomics to Consumer Products

Published Date

2018-04

Publisher

Type

Thesis or Dissertation

Abstract

Biopolymers have many unique properties which play an essential and pervasive role in everyday life, thus making them attractive for engineering applications. Understand- ing how the particular properties of biopolymers give rise to important applications in technology remains a long-standing challenge. Although biopolymers can have different chemistries, they share some common physical properties: high molecular weights, stiff backbones, and complex internal structures. Computer simulation, therefore, plays quite an important role since it provides a way to study a generic model that, by changing the parameters appearing in the model, permits studying a wide variety of biopolymers. Specifically, we focus on two such biopolymers: DNA and methylcellulose. This thesis focuses on studying the universal properties of the two aforementioned biopolymers using novel molecular simulation techniques. DNA attracts particularly strong interest not only because of its fascinating double- helix structure but also because DNA carries biological information. Genomic mapping is emerging as a new technology to provide information about large-scale genomic structural variations. In this context, the conformation and properties of the linearized DNA are only beginning to be understood. With a Monte Carlo chain growth method known as pruned-enriched Rosenbluth method, we explore the force-extension relationship of stretched DNA. In this scenario, external forces and confinement are two fundamental and complementary aspects. We begin by stretching a single DNA in free solution. This allows separation of restrictions imposed by forces from that by walls. This work shows that the thickness of DNA plays an important role in the force-extension behavior. The key outcome is a new expression that approximates the force-extension behavior with about 5% relative error for all range of forces. We then analyze slit-confined DNA stretched by an external force. This work predicted a new regime in the force-extension behavior that features a mixed effect of both sensible DNA volume and sensible wall effects. We anticipate such a complete description of the force-extension of DNA will prove useful for the design of new genomic mapping technologies. The dissertation also involves another biopolymer, methylcellulose, which has an extremely wide range of commercial uses. Methylcellulose is thermoresponsive polymer that undergoes a morphological transition at elevated temperature, forming uniform diameter fibrils. However, mechanisms behind the solution-gel transition are poorly understood. Following the computational studies by Huang et al. [1], we apply Langevin dynamics simulations to a coarse-grained model that produces collapsed ring-like structures in dilute solution with a radius close to the fibrils observed in experiments. We show that the competition between the dihedral potential and self-attraction causes these collapsed states to undergo a rapid conformational change, which helps the chain to avoid kinetic traps by permitting a transition between collapsed states. We expect our findings from computational studies of biopolymers will not only provide a deep understanding of semiflexible polymer physics but also inspire novel engineering applications relying on the properties of biopolymers.

Description

University of Minnesota Ph.D. dissertation.May 2018. Major: Chemical Engineering. Advisor: Kevin Dorfman. 1 computer file (PDF); xiii, 168 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Li, Xiaolan. (2018). Biopolymer Simulations: From Next-Generation Genomics to Consumer Products. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/199049.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.