A Sucrose Transporter and Proper Hormone Response are Essential for Nectary Function in the Brassicaceae

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

A Sucrose Transporter and Proper Hormone Response are Essential for Nectary Function in the Brassicaceae

Published Date

2013-12

Publisher

Type

Thesis or Dissertation

Abstract

Nectar is a reward presented by flowers to attract pollinators to facilitate fertilization. While much is known about the chemical make-up of nectar, little is known about the mechanisms of production and secretion of this pollinator attractant. SWEET9, a nectary enriched gene, was demonstrated to be vital for nectar production in two Brassicaceae species, Arabidopsis thaliana and Brassica rapa as determined by SWEET9pro::GUS histochemical staining and RT-PCR,. The Arabidopsis mutant atsweet9-3, produced no nectar and three independent mutants in B. rapa, (brsweet9-1, -2, and -3) similarly produced no nectar. All four mutants had normal nectary morphology. Transporter assays of SWEET9 expressed in Xenopus oocytes displayed sucrose uniport activity, suggesting a direct role in sugar export. To determine a potential mechanism for the regulation of SWEET9 expression, the plant hormone jasmonic acid (JA) was investigated because it was previously implicated in nectary function. Indeed, JA synthesis (aos-2 and dad1) and response (myb21-4) mutants displayed an absence of floral nectar, in addition to male-sterility. When treated with exogenous MeJA, aos-2 and dad1 mutants regained their nectar production and fertility, while the myb21-4 transcription factor mutant was insensitive to treatment. Significantly, SWEET9 expression was strongly decreased in the JA response mutant myb21-4, in addition to several other genes known to be important in nectary function. For example, all three JA mutants studied displayed decreased expression of PIN6, a nectary enriched gene required for proper auxin homeostasis in the nectaries of Arabidopsis. Additionally auxin response was lost in the JA synthesis mutant aos-2, suggesting an important hormonal crosstalk between JA and auxin. To further investigate the link between JA and the auxin response in nectaries, mutants with altered endogenous auxin levels were created. Mutants with decreased nectary auxin produced 50% less nectar than wild-type plants and had reduced auxin response. Cumulatively, these results identify SWEET9 as a sucrose transporter required for nectar production and that JA plays a major role in the regulation of nectary-specific genes and other hormonal pathways important for nectar production.

Description

University of Minnesota M.S. thesis.December 2013. Major: Integrated Biosciences. Advisor: Clay Carter. 1 computer file (PDF); vi, 65 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Klinkenberg, Peter. (2013). A Sucrose Transporter and Proper Hormone Response are Essential for Nectary Function in the Brassicaceae. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/177035.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.