Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Euler-Lagrangian simulations of turbulent bubbly flow.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Euler-Lagrangian simulations of turbulent bubbly flow.

Published Date

2011-03

Publisher

Type

Thesis or Dissertation

Abstract

A novel one-way coupled Euler-Lagrangian approach, including bubble-bubble collisions, coalescence and variable bubble radius, was developed in the context of simulating large numbers of cavitating bubbles in complex geometries using direct numerical simulation (DNS) and large-eddy simulation (LES). This dissertation i) describes the development of the Euler-Lagrangian approach, ii) outlines the novel bubble coalescence model derived for this approach and iii) describes simulations performed of bubble migration in a turbulent boundary layer, bubble coalescence in a turbulent pipe ow and cavitation inception in turbulent flow over a cavity. The coalescence model uses a hard-sphere collision model is used and determines coalescence stochastically. The probability of coalescence is computed from a ratio of coalescence timescales, which are dynamically determined from the simulation. Coalescence in a bubbly, turbulent pipe ow (Re#28; = 1920) in microgravity was simulated with conditions similar to experiments by Colin et al. [1] and excellent agreement of bubble size distribution was obtained. With increasing downstream distance, the number density of bubbles decreases due to coalescence and the average probability of coalescence decreases due to an increase in overall bubble size. The Euler-Lagrangian approach was used to simulate bubble migration in a turbulent boundary layer (420 < Re#18; < 1800). Simulation parameters were chosen to match Sanders et al. [2], although the Reynolds number of the simulation is lower than the experiment. The simulations show that bubbles disperse away from the wall as observed experimentally. Mean bubble diffusion and profiles of bubble concentration are found to be similar to the passive scalar results, except very near the wall. The carrier-fluid acceleration was found to be the reason for moving the bubbles away from the wall. The one-way coupled Euler-Lagrangian approach was applied to simulate the experiment of cavitating turbulent ow over a cavity by Liu and Katz [3]. The classical Rayleigh-Plesset equation is integrated using adaptive time-stepping to accurately and efficiently solve for the change of the bubble radius over time. The one-way coupled Euler-Lagrangian model predicts cavitation inception at the trailing edge of the cavity and also in the vortices shed from the leading edge, in qualitative agreement with experiment.

Description

University of Minnesota Ph.D. dissertation. March 2011. Major: Aerospace Engineering and Mechanics. Advisor: Krishnan Mahesh. 1 computer file (PDF); xvii, 136 pages, appendices A-B.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Mattson, Michael David. (2011). Euler-Lagrangian simulations of turbulent bubbly flow.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/104591.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.