Relativistic Fluids of Topological Defects

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Relativistic Fluids of Topological Defects

Published Date

2015-09

Publisher

Type

Thesis or Dissertation

Abstract

A number of papers on the topic of string fluids written by Vitaly Vanchurin and myself are reviewed. A network of Nambu-Goto strings is coarse-grained and the equations for a generalized fluid are derived. Besides the symmetric energy-momentum tensor, the fluid also has a conserved antisymmetric tensor $F$ related to the topological flux of strings. This $F$ tensor obeys the homogeneous Maxwell equations, and there is a topological constraint similar to Gauss's law for magnetism. The fluid is isentropic and pressureless and foliated by two-dimensional submanifolds which can be considered to be worldsheets of macroscopic strings. The macroscopic strings are shown to obey the known equations of motion of a wiggly string. The fluid can be generalized to have pressure and be foliated by arbitrary current carrying strings by introducing a natural variational principle. An action is constructed as a functional of three scalar fields which can be identified as the Lagrangian coordinates of the fluid. This same variational principle for a specific choice of functional is shown to lead to the equations of magnetohydrodynamics, in which the $F$ tensor above is indeed the electromagnetic tensor. Furthermore a minor modification in the fields varied leads to the equations for a model of vortices in a superfluid. The effect of dissipation can be introduced by allowing the $F$ tensor and energy-momentum tensor to depart from their equilibrium forms. The condition that entropy must increase restricts the form of the non-equilibrium components of these tensors, and leads to the analogue of the Navier-Stokes equations for a string fluid. Besides terms involving viscosity there are additional terms dependent on the curvature of the lines of flux. In the case of magnetohydrodynamics these additional terms are shown to be equivalent to Ohm's law and the thermoelectric Nernst effect. The condition that the non-equilibrium terms vanish is used to derive conditions for hydrostatic equilibrium that may be useful in astrophysical situations.

Description

University of Minnesota M.S. thesis. September 2015. Major: Physics. Advisor: Vitaly Vanchurin. 1 computer file (PDF); ii, 92 pages.

Related to

Replaces

License

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation

Schubring, Daniel. (2015). Relativistic Fluids of Topological Defects. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/190577.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.