Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Data-Driven Exploratory Interfaces for Contextualizing Parameter Spaces: Adding Intuition to Big Data

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Data-Driven Exploratory Interfaces for Contextualizing Parameter Spaces: Adding Intuition to Big Data

Published Date

2021-08

Publisher

Type

Thesis or Dissertation

Abstract

This dissertation investigates how to understand the complexities of large parameter spaces through user interaction. Both researchers and practitioners have embraced the hope of using Big Data (extremely large, heterogeneous, and unstructured datasets) to solve complex problems using statistical methods like artificial intelligence or machine learning. Unfortunately, for many disciplines (e.g. the scientific fields), these computational algorithms are black boxes that provide answers without the important explanations required for developing hypotheses. Interactive visualization offers the promise of adding intuition to Big Data, however, current approaches do not scale to the large data sizes, high-dimensionality, and ill-defined complexity. In order to address these challenges, we introduce Data-Driven Exploratory Interfaces (DDEIs), interfaces that are scalable, enable contextual navigation, and use meaningful feature interaction for intuitive exploration. Using DDEIs, we analyze Big Data in the scientific context using three separate applications, each focusing on a different ``Big'' aspect of Big Data. These include medical device design (memory intensive, spatially complex), shock physics (high-dimensional, many instances), and cell migration (memory intensive, spatially complex, high-dimensional, and many instances). In each case, we first look at traditional methods for visualizing and understanding these large datasets, then we overcome the limitations with key concepts introduced by DDEIs (specifically enabling users to define the contexts with respect to their questions, and then explore the relevant trends in the parameter space). In addition to studying the ``Big'' aspects of Big Data (Challenge 1), in parallel, we study two other challenges (Challenge 2 and Challenge 3) relevant to understanding Big Data. The second challenge involves investigating approaches to solving the high-dimensional sparsity problems (Challenge 2). Here we use prediction and sampling strategies to analyze the gaps in knowledge. In the third challenge, we consider how to use interaction to navigate and understand ill-defined features in the data (Challenge 3). Using DDEIs, we combine natural exploration techniques with data-driven algorithms to understand application specific features across parameter space sampling properties (input, output, local, global). In this dissertation we show that DDEIs can overcome the limitations of traditional visualization approaches while creating new intuitive views into otherwise ill-defined and complex phenomena.

Description

University of Minnesota Ph.D. dissertation. August 2021. Major: Computer Science. Advisor: Daniel Keefe. 1 computer file (PDF); xii, 184 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Orban, Daniel. (2021). Data-Driven Exploratory Interfaces for Contextualizing Parameter Spaces: Adding Intuition to Big Data. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/225099.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.